第 42 回地盤工学研究発表会総括表

2. 調査・分類

(1)物理探査・可視化・サウンディング

応用地質(株)利藤房男

表 - 1 研究分野の分類(31編)

	発表	内容
	件数	
表面波探査	3	道路及び河川盛土での表面
		波探査(19,24,25)
弾性波の伝播特性	2	波の位相差などによる宅地
		の不均一性評価(20,21),
音響トモグラフィ	2	杭の支持層の可視化(26,27)
電気探査	2	マルチ送信比抵抗探査の開
		発(22),河川盛土での電気探
		査(23)
三次元化	2	三次元岩盤分類(28),三次元
		変位計測システム(29)
スウェーデン	1	土木小構造物に適用(30)
動的コーン貫入試	6	RPD 連続打擊貫入試験(36),
験		軽量動的コーン貫入試験
		(37,38,39), 試験結果の解
		釈(32,35)
静的コーン貫入試	9	無線コーン(40,49),多機能
験		小型圧入機による多成分コ
		ーン(42,43),試験結果の解
		釈(31,44,45,46,48)
新しいサウンディ	3	動的貫入併用静的コーン
ング調査法		(33),深海底でのポータブル
		コーン(41),MST コーン(47)
原位置試験	1	せん断摩擦試験(34)

(2)「地層判別・調査法等」

基礎地盤コンサルタンツ(株) 阪上 最一

(例)表 研究分野の分類(編)

項目	発表	内容
	件数	
地層判別・地質構	7	地盤定数の決定や判定
成		(<u>50</u> , <u>51</u> , <u>56</u>), 地層判
		別・地質構成の決定 (<u>52</u> ,
		<u>55</u>),新岩盤分類法(<u>53</u>)
		地表決定(<u>54</u>),
調査法・採取法・	10	サンプリング (<u>59</u> , <u>60</u> ,
センサー		<u>61</u> , <u>65</u>),サウンディング
		(<u>57</u> , <u>63</u> , <u>64</u> , <u>66</u>) ,セン
		サー (<u>57</u> , <u>62</u>)
古墳・文化遺産の	10	海外事例(<u>67</u> , <u>68</u> , <u>73</u>)
地盤工学的評価		石垣の安定(<u>69</u> , <u>72</u> , <u>74</u>)
		古墳 (<u>70</u> , <u>71</u>) , 古い土構
		造物(<u>75</u> , <u>76</u>)

3. 地盤材料 - 粘性土 強度•变形,物理的性質他

長岡技術科学大学 豊田 浩史

表	研究分野の分類	(63編)	١

		の分類 (63 編)
項目	発表	内容
	件数	
物理・力学的性質	6	堆積環境(125,146,147,
		148),拡張フォールコーン
		(143),底泥の沈降特性
		(144)
透水・圧密・膨潤	15	二次圧密 (116,122), 粘
特性		土(ベントナイト)の膨潤
		特性(117,118,138,139,
		142),温度·速度依存(119,
		136),サンプリングと試料
		の乱れ(120),圧縮・変形
		予測(121,126),クリー
		プの影響 (135), 重金属イ
		オンの影響 (141), 骨格構
		造モデル(145)
弾性(変形)係数・	13	品質評価(123),練返し粘
動的特性		土(124),受信波形シミュ
		レーション (149), 湖成・
		海成粘土(150),混合土
		(砂・シルト・粘土)(151,
		157,158,159),超軟弱粘
		土(152,153),自然堆積
		粘土の異方性(154),ベン
		トナイト (155), 原位置・
		室内試験 (156)
強度特性	18	【試験手法】
		摩擦・粘性・温度依存(97,
		98),表層粘着力(103),
		引張り強度(105), K ₀ 圧密
		(106),カバーソイルの亀
		裂発生(112)
		【速度,時間,寸法効果】
		K ₀ 圧密非排水せん断(107,
		110,134),強度増加率
		(108),一面せん断(109)
		クリープ(99), 自然堆積
		粘土(100),セメント混合
		土(101),残留強度の温度
		依存(102),原位置強度推
		定(104),異方性(111),
		不確かさ(140)
数值解析	11	【解析手法】
		メッシュフリー法(113),
	-	

最小時間増分 (115), 尖り
点処理,異方性(127),負
荷判定(131),Metastability
特性(132),陽解積分法
(133), 熱連成圧密(137)
【モデル化】
密度・構造(128),引張り・
脆性挙動(129),異方硬化
則 (130)

3. 地盤材料 - 中間土 変形・強度, 物理的性質

埼玉大学地圏科学研究センター 桑野 二郎

表 中間土 研究分野の分類(19編)

項目	発表	内容
	件数	
メタンハイドレ	4	表層型 MH のベーン強度
ート(採取試料・		と物理的性質(170),表層
原位置の特性)		型 MH の一軸圧縮と CRS
		(171) , 表層型 MH 地盤の
		現地計測(172),大水深海
		底試料の三軸試験(175)
メタンハイドレ	4	解離沈下(160),分解時力
ート(人工試料の		学特性(161), 生成・分解
特性)		と力学特性(173),三軸試
		験ひずみ速度依存性(174)
メタンハイドレ	2	三軸圧縮試験(162),多層
ート(シミュレー		地盤(163)
ション)		
細粒分混じり砂	4	液状化強度(165),強度・
		等価骨格間隙比(166),強
		度・載荷速度(167),強度・
		細粒分含有率(176)
砂・礫	2	不安定挙動シミュレート
		(164), 最大粒径と供試体
		寸法(168)
その他	3	実土層のせん断波速度・
		拘束圧(169) ,Ca イオン浸
		透・セメンテーション発
		現(177),山砂の透水性
		(178 発表無し)
•		

3. 地盤材料 - 砂質土 強度 ·変形 ·動的性質

東北大学 風間 基樹

3. 地盤材料 -

礫質土、軟岩・硬岩

研究内容の分類

中部電力(株) 河村精一

項	発	内容
目	表件	
	数	
強	16	洪積砂の変形強度,締め固め
度		(179-181), まさ土の異方応力下のクリ
		ープ(182-183),粒子形状,粒度分布の
		効果(184-185),粒度組成に着目した
		DEM 解析(186),三次元支持力解析
		(187), せん断帯の破壊基準(188), 側
		方載荷実験と応力再配分(189),根系を
		含む地盤の引張り強度(190), 不完全不
		飽和砂の非排水せん断挙動(191),低拘
		束圧での液状化強度(192), せん断中の
		体積変化と変形強度特性(193),三軸伸
		張条件下の定常状態(194)
变	17	繰返し液状化・圧密過程での力学特
形		性の変化(195),繰返しせん断による構
		造の高位化現象(196), t _{ij} 概念に基づ
		く弾性式(197),粒子構造の座屈と応力
		誘導異方性(198), 粒状体の粘性モデル
		(199 201), 粘性年代効果のモデル化
		(202),粒子破砕の影響(203),砂の堆
		積面と主応力方向偏差が強度に及ぼす
		影響(204),応力プローブ試験(205),
		せん断帯のひずみ分布を考慮した安定
		解析 (206),X 線 CT を用いた一軸圧縮
		下の変位計測(207),画像解析による供
		試体の局所変形計測(208 209), 要素
		変形と弾塑性分岐解析(210),逆断層破
		壊過程の数値モデル(211)
動	9	CIP-DEM 連成数値解析モデル(212),
的性		一面せん断による液状化試験
質		(213,214), 不飽和砂の液状化過程の B
		値(215),不飽和まさ土の繰返しせん
		断(216),実被災地盤の液状化判定
		(217), 圧密履歴と液状化強度(218),
		破砕性火山灰の凍結融解履歴と剛性変
		化(219),PS 灰混合砂の液状化特性
		(220)

項目 発表 内容 件数	表。	研究分野の)分類(17 編)
 礫質土 9 不撹乱礫質土の三軸圧縮特性(221、222)締固めと変形強度特性(223)水みち層の力学特性(224)粗粒材料の液状化強度特性(225)岩ズリ材料の特性(226、227)破砕性材料の圧縮性(228)三次元個別要素法(229) 軟岩・硬岩 8 泥岩の風化(230)軟岩の膨潤(231、232)弾粘塑性構成式(233、234)軟岩の繰り返し載荷(235)不連続面のせん 	項目	発表	内容
特性(221、222) 締固め と変形強度特性(223) 水みち層の力学特性 (224) 粗粒材料の液状 化強度特性(225) 岩ズ リ材料の特性(226、227) 破砕性材料の圧縮性 (228) 三次元個別要素 法(229) 軟岩・硬岩 8 泥岩の風化(230) 軟岩 の膨潤(231、232) 弾粘 塑性構成式(233、234) 軟岩の繰り返し載荷 (235) 不連続面のせん		件数	
と変形強度特性 (223) 水みち層の力学特性 (224) 粗粒材料の液状 化強度特性 (225) 岩ズ リ材料の特性(226,227) 破砕性材料の圧縮性 (228) 三次元個別要素 法(229) 軟岩・硬岩 8 泥岩の風化 (230) 軟岩 の膨潤 (231、232) 弾粘 塑性構成式 (233、234) 軟岩の繰り返し載荷 (235) 不連続面のせん	礫質土	9	不撹乱礫質土の三軸圧縮
水みち層の力学特性 (224) 粗粒材料の液状 化強度特性(225) 岩ズ リ材料の特性(226,227) 破砕性材料の圧縮性 (228) 三次元個別要素 法(229) 軟岩・硬岩 8 泥岩の風化(230) 軟岩 の膨潤(231、232) 弾粘 塑性構成式(233、234) 軟岩の繰り返し載荷 (235) 不連続面のせん			特性(221、222) 締固め
(224)、粗粒材料の液状 化強度特性(225)、岩ズ リ材料の特性(226、227)、 破砕性材料の圧縮性 (228)、三次元個別要素 法(229) 軟岩・硬岩 8 泥岩の風化(230)、軟岩 の膨潤(231、232)、弾粘 塑性構成式(233、234)、 軟岩の繰り返し載荷 (235)、不連続面のせん			と変形強度特性(223)
 化強度特性(225) 岩ズリ材料の特性(226、227) 破砕性材料の圧縮性(228) 三次元個別要素法(229) 軟岩・硬岩 8 泥岩の風化(230) 軟岩の膨潤(231、232) 弾粘塑性構成式(233、234) 軟岩の繰り返し載荷(235) 不連続面のせん 			水みち層の力学特性
リ材料の特性(226、227) 破砕性材料の圧縮性 (228) 三次元個別要素 法(229) 軟岩・硬岩 8 泥岩の風化(230) 軟岩 の膨潤(231、232) 弾粘 塑性構成式(233、234) 軟岩の繰り返し載荷 (235) 不連続面のせん			(224) 粗粒材料の液状
破砕性材料の圧縮性 (228)、三次元個別要素 法(229) 軟岩・硬岩 8 泥岩の風化(230)、軟岩 の膨潤(231、232)、弾粘 塑性構成式(233、234) 軟岩の繰り返し載荷 (235)、不連続面のせん			化強度特性(225) 岩ズ
(228) 三次元個別要素 法(229) 軟岩・硬岩 8 泥岩の風化(230) 軟岩 の膨潤(231、232) 弾粘 塑性構成式(233、234) 軟岩の繰り返し載荷 (235) 不連続面のせん			リ材料の特性(226、227)
法(229) 軟岩・硬岩 8 泥岩の風化(230) 軟岩 の膨潤(231、232) 弾粘 型性構成式(233、234) 軟岩の繰り返し載荷 (235) 不連続面のせん			破砕性材料の圧縮性
軟岩・硬岩8泥岩の風化(230) 軟岩 の膨潤(231、232) 弾粘 塑性構成式(233、234) 軟岩の繰り返し載荷 (235) 不連続面のせん			(228) 三次元個別要素
の膨潤(231、232) 弾粘 塑性構成式(233、234) 軟岩の繰り返し載荷 (235) 不連続面のせん			法 (229)
塑性構成式 (233、234) 軟岩の繰り返し載荷 (235) 不連続面のせん	軟岩・硬岩	8	泥岩の風化(230) 軟岩
軟岩の繰り返し載荷 (235) 不連続面のせん			の膨潤(231、232) 弾粘
(235) 不連続面のせん			塑性構成式 (233、234)
			軟岩の繰り返し載荷
斯特性(236) 模型宝驗			(235) 不連続面のせん
			断特性(236) 模型実験
による断層形態 (237)			による断層形態 (237)

3. 地盤材料 - リサイクル材料

茨城大学 小峯 秀雄

表 研究分野の分類(44編)

項目	発表	内容
	件数	
スラグ	6	力学特性(238, 240, 241,
		269),硬化特性(239,242)
タイヤチップ・木	13	力学特性(243, 244, 245,
片チップ・発砲プ		247, 248, 249, 250, 255),
ラスチック		力学モデル(245),動的問
		題(251, 252, 253, 254)
石炭灰・焼却灰	9	物理化学的性質(256,
		257) , 力学特性(258, 260,
		261, 262, 263), 動的性質
		(259) , 処理法(272)
浚渫土・浄水汚	8	処理法(264, 265, 266),材
泥・建設汚泥		料特性(267, 268, 270, 271,
		273)
その他	8	ガラスカレット(274), 古
		紙(275, 279), ヨシ(276,
		277),破砕コンクリート
		(278) , 廃石膏ボード
		(280), キラ(281)

3. **地盤材料 - 改良土・軽量土** (1) 現場への適用

(株)不動テトラ 深田 久

表 研究分野の分類(17編)

	女 饼光?	プ野の分類(1/編 <i>)</i>
項目	発表	内容
	件数	
管中混合固	6	強度のばらつき(302),体積土
化処理土		量変化(303),フロー値と圧送
		元圧(304),打設時の法勾配
		(305),コーン貫入抵抗の評価
		(306), 撹乱を受けた処理土の
		強度特性(307)
流動化処理	4	三軸試験,数値解析(311,312),
土		管理方法(313),膨張剤混入の
		影響 (314)
その他	7	浚渫改良土の盛土への適用
		(308),カルシウムの溶脱特性
		(309),固化土の含水比と粒度
		の影響評価(310) , 浅層地盤改
		良における粉塵抑制対策
		(315),まさ土の地盤改良への
		適用性(316),安定処理土の凍
		上の影響(317),ベトナムでの
		セメントスラリーを用いた固
		化改良の有効性(318)

3. 地盤材料 - 改良土・軽量土 セメント改良土、薬液注入他

九州大学 笠間清伸

材料表 - 1 研究分野の分類(35編)

項目 内容 セメント 六価クロム(319), 圧密養生(320, 改良土 321), せん断波速度(322), 長期材齢 (324), 中空ねじり(325), セメント改 良礫(323,326,327) 薬液注入 超微粒子懸濁型改良材(328),原位置 試験(329),液状化確率(330),地盤改 良効果(331),細粒分を含む力学特性 (332), せん断波速度(333), 膨潤性固 化材(334) リサイク 線状高分子混合(335,336),繊維質 ル材 材混合(337),タイヤチップ(338),タ イヤチップ補強土(339), 貝殻混合 (340,341),窯業副産物(342),泥土 +PS 灰(343) 気泡混合 10 短繊維(344),短繊維+模型実験(345), 処理土 透水特性(346), 強度特性(347), 暴露 環境での強度特性(348,349),長期 安定性+湿度(350),模型実験(351), 発泡ビーズ(352), EPS ビーズ+微小 ひずみ(353)

3.地盤材料

特殊土・不飽和土

北海道大学 石川 達也

砂質土 ロック材 (382,

383),シルト(384,385, 386,387),飽和度変化 (388,389,390)

表 研究分野の分類(37編) 項目 発表 内容 件数 特殊土 10 しらす(354,355,356), レゴリス(357,358),高 有機質土(359,360,361, 362,363) 水浸・凍結融解他 サクション浸水コラプス 10 強度低下(364,365,366, 367,368),締固め材料判 定(369,370,371),破 砕性土凍結融解(372, 373) 不飽和土の力学 8 セルロース膜利用(374), 特性 せん断強度式(375,376, 377), 粒状体力学モデル (378), リングせん断試 験(379), サクション効 果(380), 粘弾塑性モデ ル(381)

不飽和土の動的

性質

4.地盤挙動

(1) 圧密沈下

大阪市立大学 大島昭彦

4. 地盤挙動

(3)凍結・凍上、岩盤

北海学園大学 小野 丘

表-1 研究分野の分類(37編)

項目	発表 件数	内容
多次元圧密	12	盛土による挙動予測 (391,393,395,396,397,
解析		398), 閉塞した中間砂礫層の影響 (394,401),
構成則		残留沈下の要因検討(392,403,404,405)
一次元圧密	7	アイソタックモデルの VDへの適用(399),基
解析		準ひずみ速度の影響(400), 二次圧密モデル
ひずみ速度		(402,414),神戸空港の長期沈下予測(406,
		407), 泥炭のひずみ速度依存性 (408)
地下水位の	4	地下水位回復による地盤隆起(410,411),地下
変動		水位再低下による沈下量予測(416,417)
構造物基礎	4	戸建住宅地盤の沈下予測(409)鉄道車輌基地
の沈下		の変状 (412), コラム?スラブ系基礎の沈下予
		測 (413), 不同沈下抑制工法 (415)
真空圧密	4	泥炭層 (418),周辺域の沈下特性 (419),盛
		土速度(420),計測と解析の比較(421)
切土・掘削	6	掘削時の斜面安定(422,424),斜面崩壊の数
		値解析(423),泥水掘削溝壁の安定(425,427),
		土留め掘削の弾粘塑性解析(426)

(2) 地盤改良

港湾空港技術研究所 北詰 昌樹

表 研究分野の分類(38編)

項目	発表	内容
	件数	
締固め	9	静的締固め工法(428, 429, 530, 431,
		432, 436), ゲル圧入工法(433), SCP
		地盤挙動(434)
複合地	9	SCP 改良地盤挙動(437, 438, 441),
盤・薬		DMM 改良地盤挙動(439, 440), 止水
液注入		効果(442,443),新しい固化工法(444,
		445)
固化改	11	445) 複合地盤挙動の評価(446, 447, 451,
固化改良他	11	
	11	複合地盤挙動の評価(446, 447, 451,
	11	複合地盤挙動の評価(446, 447, 451, 452, 455), 施工報告(450, 456), 複合
	9	複合地盤挙動の評価(446, 447, 451, 452, 455),施工報告(450, 456),複合 地盤等価せん断波評価(448, 449),施
良他		複合地盤挙動の評価(446, 447, 451, 452, 455),施工報告(450, 456),複合 地盤等価せん断波評価(448, 449),施 工時の地盤変状態(453, 454)

表 - 1 研究分野の分類(17編)

	項目		内容
	土の凍上性	3	凍結膨張圧(471) 不凍水分量 (475),火山灰質粘性土(478)
結	凍上対策工 法	7	斜面(466,467,468,469), 断熱 工法(472,473),屋外実験(477)
凍 上	構造物との 相互作用	1	埋設チルドパイプ(476)
	冷熱の利用	2	含水比低下(470) ,ヒートパイ プ(474)
岩盤	室内試験と 解析	3	遠心力模型実験(479) ,せん断 実験結果の解析(480) 熱的性 質(481)
	原位置試験	1	原位置三軸試験(482)

5. **物質中の移動**

岡山大学 竹下祐二

項目	発表 件数	内 容				
地下水流動・地下水調査	地下水流動・地下水調査					
広域地下水の環境問題	4	大深度間隙水圧測定(504),深井戸(505),海岸地域の地下水位 変動(507),三次元水循環モデル(512)				
地下水流動保全対策	2	影響圏半径 (503), 植物の生育阻害 (508)				
調査方法の開発	2	溶存メタンの原位置測定(506),透水係数の異方性(509)				
地盤浸透,安定問題	2	斜面内の土中水分量変化(510), 堤体内の水位観測(511)				
地盤浸透(飽和土)						
流動特性・透水性の測定,試験方法の提案	5	有機系廃棄物懸濁液 (513), ベントナイト(514), ジオグリッド補強土 (516.517), 境界近傍の透水特性 (522)				
透水係数の推定・評価	2	透水異方性(515), 透水係数の推定式(515)				
浸透破壊・河川堤防	3	柵渠型排水路(519),砂粒子の移動特性(520),越流を考慮した浸透流解析(521)				
地盤浸透 (不飽和土)						
浸透特性	4	数値力学モデル (523),原位置透水試験(524),豪雨時の 浸透特性(528),しらす(532)				
浸透破壞	4	Smoothed Particle Hydrodynamics 法 (525), 気泡挙動の画像解析 (526), 河川堤防 (531), 遠心模型実験 (533)				
不飽和浸透流	3	雨水浸透枡 (527), 画像解析による飽和度測定 (529), 薬液 注入 (530)				
岩盤浸透・移流拡散・透気性						
移流拡散 (熱)	1	地下水流速 (532)				
岩盤浸透	3	セメントグラウト (535), 長時間透水試験 (536), 割れ目幅の計測 (537)				
透気性	3	河川堤防 (538), 二酸化炭素の帯水層貯蔵 (539), 飽和砂層 への空気圧入 (540)				

6. 地盤と構造物-土構造物

(1)ダム・堤防

岡山大学 小松 満

表 研究分野の分類(24編)

77 17 17 17 17 17 17 17 17 17 17 17 17 1				
項目	発表	内容		
	件数			
ダム・堤防の耐	8	地震被害と復旧(541,542),耐震事		
震		例と補強対策(543),振動台実験・		
		数値解析(544),ロックフィルダム		
		の地震時すべり変形量(545),遠心		
		場での堤防浸透破壊実験・粒状体個		
		別要素法解析(546), 既設アースダ		
		ムの形式と構造(547), 矢板工法に		
		よる側方変位対策法(548)		
ダム・堤防の浸	8	フィルダムコア材透水実験(549),		
透・変形		ロック材料の低拘束圧条件下での		
		強度特性(550,551),大型模型実験		
		(552),一次元变形特性(553),堤防		
		浸透 - 变形連成解析 (554,555,		
		556)		
ダム・堤防の施	8	加速度応答解析によるフィルダム		
工・維持管理		管理手法(557,558),越流許容型た		
		め池工法(559),河川堤防の点検評		
		価法(560),堤防安定度評価の模型		
		実験(561),ため池の決壊リスクに		
		よるライフサイクルコスト(562),		
		堤体下底樋の土圧挙動(563),ため		
		池底樋の漏水防止模型実験(564)		

6. 地盤と構造物-土構造物

(2)道路・鉄道

(財)鉄道総合技術研究所__小島__謙一

表研究分野の分類(地盤と構造物-土構造物(2))(17編)

項目	発表 件数	内容			
耐震(材料特性)	1	動的強度特性(565)			
耐震(挙動・メカニズム)	3	浸透水位の影響(566), 軟弱地盤 上の盛土(567,568)			
耐震 (対策工)	4	盛土の耐震対策(569,572),構造 物境界の耐震対策(570,571)			
施工・管理 (土の評価)	2	ローム(573), ぜい弱岩(575)			
施工・管理(締固め)	2	重錘による締固め管理(574,576)			
施工・管理(管理手法・ 予測手法)	3	試験盛土による評価(577),安全 率による動態観測(578), FEMを 用いたアセットマネジメント (579)			
施工・管理(バラスト軌 道構造)	2	新 しいバラスト軌 道 構造 (580,581)			

6. 地盤と構造物 - 基礎構造物 - 杭

(1) 鉛直支持力、載荷試験, 回転貫入杭-木杭 ジャパンパイル(株) 小椋 仁志

(2) 水平抵抗、地震時挙動

(株)竹中工務店 内田明彦

表 研究分野の分類(33編)

			表	研究	飞内容分類表(25 編)
項	発	内容	項目	発表 件数	
目	表 件 数			IT XX	シートパイルで補強された杭基礎 の模型実験(615) 群杭の模型実験(616,617,618)
杭 (鉛直 支 持力)	11	拡底基礎の支持力 (582), 先端閉塞効果と支持力(583) 自己拡底杭の支持力(584), 打込み杭の支持力評価(585), 深礎杭の周面抵抗力(586), 施工中の残留応力と周面摩擦力(587), 節杭の周面支持力(588),	杭の水平抵抗	9	鉄鋼スラグ浅層改良杭の FEM 解析 (619) テーパー杭の Winkler モデルによる 解析(620) 斜杭基礎の模型実験(621) 部分拡幅杭の模型実験(622) 盛土荷重の杭基礎への影響に関す る遠心実験(623)
		補強基礎の引上げ荷重(589), 拡底杭の引抜き抵抗(590), 種々の荷重を受けるパイルドラフト基礎の支持力 (591,592)	液状化・側方 流動・地盤被害 	7	不飽和による水平応力の低減(631) 鋼矢板による補強(632) 杭頭接合条件による杭基礎の挙動 (633) 側方流動地盤での杭挙動(634,365) 杭地盤系の相対剛性と基礎被害
杭 (動	5	大沈下を伴う急速載荷試験(593), 急速平板載荷試験のデータ整理(595),			(636) 杭基礎の地震被害と地盤構造(637)
的 荷試 <u></u> 験 杭 (静	5	ソイル柱・砕石の急速載荷試験(596), 木杭・鋼管杭の急速載荷試験(597), 鋼管杭の動的水平載荷試験(598) FEM で用いる杭のモデル化(594), 羽根付き P B拡大根固め杭の鉛直・引抜き支持力	耐震(液状化・ 流動化を除く)	9	杭中間部の地盤改良による杭基礎の耐震補強(638,639) 免震基礎の鉄道橋梁への適用(640) タワークレーンの安定性(641) 斜杭の振動台実験(642) 斜杭のシートパイル耐震補強(643)
的載 荷試 験)		(599,600),地盤改良併用杭の組み合わせ荷重載荷(601), 小口径鋼管杭の水平載荷試験(602),			群杭への応答変位法の適用(644) 遠心実験の拡張型相似則(645) Kelvin 解による近似相互作用係数 (646)
杭(回転貫入杭)	7	羽根付き鋼管杭の引抜き支持力(603), 模型回転貫入杭の引抜き試験・交番載荷試験(604,605), 回転貫入杭の施工時残留応力(606), 回転貫入杭の打ち止め方式(607), 二層地盤での回転貫入杭の支持力(608), 施工による周辺地盤への影響(609),			
杭 (木 杭)	5	木杭の圧入施工試験(610),木杭の耐久性(611) ,木杭の鉛直支持力(612),木杭の引抜き 抵抗・水平抵抗(613), 施工後 44 年経過木杭の支持力(614)	_		

6. 地盤と構造物 - 基礎構造物 - 杭 6. 地盤と構造物 - 基礎構造物 - 杭以外 施工管理・新工法他、パイルド・ラフト基礎、

杭頭接合・既設杭

寒地土木研究所 冨澤 幸一

表 - 1 研究分野の分類 (26編)

発表	内 容
件数	
7	鋼管杭継手暴露試験
	(624), 鋼管杭メタル
	ロード工法(625), 場
	所打ち杭岩盤施工管
	理(626), 仮設杭摩擦
	低減引抜き撤去(627),
	杭先端根固め部の品
	質評価(628), 先端プ
	レロード場所打ち杭
	工法(629), 正循環掘
	削方式場所打ち杭
	(630)
10	併用基礎の支持機構
	解析(解析条件, 3D 解
	析) (647, 648),大型模
	型実験によるシミュ
	レーション解析(鉛直
	載荷・長期載荷、水平
	載荷,振動台実験)
	(649, 650, 651), 沈下
	特性の 3D 簡易変形解
	析(単杭・直接基礎, 摩
	擦杭) (652, 653), 鉛直
	支持力 3D 解析(654),
	3D 解析プログラム
	PRAB(655), 地盤振動
_	杭断面力(656)
9	中詰めコンクリート
	杭頭接合法(657), RC
	杭頭水平載荷試験
	(658), 杭頭縁切り工法摩擦せん断実験
	(659),薄層杭頭非接 触方式(薄層密度, 層
	限力式(海僧名度, 僧 厚) (660, 661), 杭頭半
	厚) (600, 601), 机顕平 固定場所打ち杭(662),
	既設杭耐久性(663),
	既設杭の新規杭支持
	機構影響(水平載荷試
	験,鉛直載荷試験)
	(664, 665)
	件数

鉄道総合技術研究所 西岡 英俊

表 1 研究内容分類表 (41 編, No.666~706) 6.地盤と構造物 - 基礎構造物 - 杭以外 改良地盤上の基礎,他 10編

	-/-	- Camaro
項目	発表	内 容
	件数	
改良地	4	振動締め固め改良地盤(666,667,668)
盤上の		セメント改良地盤 (669)
直接基		
礎		
パイル	2	多層地盤の沈下解析(670),長期計測結果(671)
ドラフ		
ト基礎		
その他	4	回転杭の支持力係数(672),逆 T字型基礎(673),
		道路橋の応答変位法 (674),
		石レンガ積み橋脚の耐震性(675)

直接基礎 11編

項目	発表	内 容					
	件数						
支持力	6	斜面上の直接基礎 (676 , 677) ,					
		平地盤上の直接基礎(678,680,681),寸法効果(678)					
变形	2	沈下計算(682), 浮き上がり(685)					
現場	3	平板載荷試験 (683 , 684) , 施工時安定 (686)					

ケーソン,鋼管矢板基礎 9編

項目	発表	内容
	件数	
ケーソ	3	護岸ケーソンの液状化時挙動 (687,688),
ン		既存ケーソンの水平載荷試験 (689)
鋼管矢	4	鋼管矢板によるケーソン補強 (690),
板基礎		H-H 継手開発 (691 , 692) , 支持力特性 (693)
アンカ	2	拡径型アンカーの遠心場引き抜き実験(694),
_		アンカーリフトオフ試験の新型ジャッキ開発(965)

基礎一般,小口径杭 11編

項目	発表	内容		
	件数			
高架橋	4	基礎スラブによる補強効果 (696,697),		
基礎		近接杭の干渉効果 (698), 常時微動による健全度評価 (
杭の支 7 繰返し載荷の影響 (700),		繰返し載荷の影響 (700),		
持力		セットアップ (支持力増加の時間依存) (701),		
		軟弱地盤地域での宅地用小口径鋼管杭および		
		木杭の鉛直支持力(702~706)		

6. 地盤と構造物 - 抗土圧構造物 擁壁・山留め , 岸壁・護岸

国土交通省 宮島 正悟

表 - 1 研究分野の分類(33編)

	表 - 1	研究分野の分類(33編)
項目	発表	内容
	件数	
擁壁	6	棚付き自立式擁壁の水平土圧
		(707),補強土擁壁の構造性能
		(708),鉄筋構造を有する大型ブロ
		ック擁壁の設計法・耐震性・構造
		特性 (709,710),自立式鋼矢板擁壁
		の変形・耐震性(711,712)
山留め	16	山留め掘削時の既存施設の影響
		(713), 二段山留め掘削時の変形・
		応力特性(714,715),掘削底面の格
		子状地盤改良の評価(716), 山留め
		の非線形挙動(717),山留め壁に作
		用する側圧と切梁反力(718),根切
		り山留め工事における地下水排水
		数値解析の信頼性(719),大規模ア
		ンダーピニングの施工と変形
		(720),歷史的建造物近接掘削工事
		の施工と変位(721), 土留め壁に生
		じた軸力の発生機構(722), 土留め
		掘削解析への構成則の影響(723),
		上載荷重による側圧への影響評価
		(724),山留壁の三次元挙動(725),
		現場計測に基づく山留め設計法
		(726),大深度掘削工事における先
		行地中梁合理化検討 (727) ,袋詰め
		モルタル覆工を用いた深礎工法施
		工実験(728)
岸壁・護	11	鋼管矢板井筒護岸の変形挙動・設
岸		計法(729,730,731) ,三次元流動解析
		でのケーソンのモデル化(732), セ
		ル式岸壁の根入れによる耐震性評
		価(733),控え矢板式岸壁の変形
		(734,735),前面地盤改良のある矢
		板式岸壁の変形特性(736),側方流
		動を受ける矢板護岸の変形挙動
		(737), 裏込め石の透水係数が重力
		式岸壁の変位に及ぼす影響(738),
		遮水材によるハット形鋼矢板継手
		の遮水性(739)

5. 地盤と構造物 - 地中構造物 トンネル・シールドトンネル・埋設官 東京大学 桑野 玲子

表の研究分野の分類(32編)

		1	が親(32編 <i>)</i>
項目		発表	内容
		件数	
トンネ	掘削時挙動	4	切羽近傍地盤の変位 (740)線路下横断工事 における軌道変状 (741)リングカット工 法の効果(742)サイド パイルの効果と設計 (743)
ル	長期挙動維持管理	2	トンネルの変状発生要 因(744)変状トンネル 対策工の効果(746)
	耐震性	1	断層変位によるトンネ ル損傷の緩和対策(747)
	シールド トンネル		二次元円形トンネル掘 削時挙動(749,750,751) セグメントの作用土圧 (752,753) 浮力作用時 のセグメントの断面力 (755) 近接施工の現場 計測(756) シールド場 所打ちライニングの数 値解析(757)
埋設管・埋設構	作用土圧 変形挙動	8	埋設構造物の作用土圧 (759) 斜め掘り溝型埋 設管(760,761,762,763) たわみ性管の繰返し載 荷(764) 泥炭地盤の埋 設管浅埋設(765) 大口 径管(772)
造 物	老朽化 維持管理	4	電気通信ネットワーク 地下トンネルの維持管 理(745)管水路の経年 劣化(766)老朽管の更 生工法(770)管破損部 周辺地盤の空洞形成 (771)

		連続プレキャストアー
		チカルバートの耐震性
		(748)送水管の耐震性
		評価 (767) ジオシンセ
地震時挙動	5	ティックを用いた圧力
		管屈曲部スラスト防護
		工 (768,769) 液状化地
		盤内の継手部の挙動
		(773),

6. 地盤と構造物 - 複合構造物

補強土(1)~(3)

鹿島建設㈱ 北本 幸義

1. はじめに

表 - 1 研究内容の分類(29編)

項目	発表	内 容			
	件数				
面材による	7	面内方向透水性能(793),高盛土補			
盛土補強		強土壁(802~804) ,二重壁構造(805			
		~ 807)			
棒・帯材による	6	多数アンカー(779,785,786),テ			
盛土(基盤)補強		ールアルメ (787,788), 格子状補			
		強枠(800)			
棒材による	4	先端拡大補強材(783,784),石積			
地山(既設盛土)		み擁壁変状対策(799),除去式地山			
補強		補強土(801)			
表層拘束による	5	長繊維混入補強土 (780,781),ジ			
地山補強		オセル補強土壁 (794),浅層崩壊抑			
		制(796),盛土斜面補強対策(798)			
構造物の	7	ジオグリッド補強固化土(782,			
構築・補強		797),ジオテキスタイル補強土橋梁			
		(789~791),防護柵支柱(792),			
		地盤 - 各種材料間摩擦特性 (795)			

6. 地盤と構造物 - 動的問題

(1) 地中構造物,トンネル,地中構造物,液状化,浮上り

中日本建設コンサルタント(株) 栗本 和明

表 研究分野の分類(16編)

衣 研九分野の分類(16編)					
項目	発表	内容			
	件数				
振動台実験	2	ポリマー免震材による地			
		震時土圧低減(808),軽量			
		洪水吐きの地震時変形応			
		答と耐震性(818),			
地震時応答解析	5	ランプトンネルの二次元			
		地震時応答解析と三次元			
		地震時応答解析 (810) ,ラ			
		ンプトンネルの三次元地			
		震時応答解析による評価			
		(811,812,813) "緩みを考慮			
		した地盤の二次元地震時			
		挙動(814)			
浮上り対策	4	遮水壁による側方変位抑			
		制(816),マンホール浮上			
		リ対策(817,819),地下水位			
		低下工法による過圧密履			
		歴(820),			
浮上り量予測	3	浮上り解析における地盤			
		の変位量の評価			
		(821,822,823),			
リサイクル材料	1	リサイクル材料(818)			
沈下予測	1	沈下量の予測(824)			

7. 地盤防災 - 地震

(2)振動特性・応答モデル

7. 地盤防災 - 地震

斜面(室内実験・模型実験・ 数値解析・危険度評価)

日本大学 中村 晋

(財)鉄道総合技術研究所 太田 直之

(その他)研究内容の分類

表 研究分野の分類(16編)

表 研究分野の分類(16編)					
項目	発表 件数	内容			
地盤の振動性状	5	常時微動による埋め立て 地盤(891,892),台地(898), 盛土(896)の振動特性,地 盤振動と地盤種別(893),			
地盤の動特性	4	地盤の卓越周期とレーリー波速度(895),海外協力・イランラブリーズ市の弾性波探査(894),アレー観測による S 波速度(902),2003年十勝沖地震の本震,余震による地盤特性の変化(904)			
地震被害と地盤 構造	3	ー観測による S 波速度 (902),2003 年十勝沖地震 の本震,余震による地盤			
地盤の地震応答	4	多重反射と表層地盤の非 線形(899), KiK-net のデ ータに基づく地震動の増 幅特性(900), 因果的履歴 減衰モデル(901), 2000 年 鳥取県西部地震における 境港(903)			

表 - 1 研究分野の分類(22編)

項目	発表	内容
	件数	
室内試験	4	中越地震不攪乱試料の力
		学特性(907,908,909,
		910),
模型実験	6	岩盤斜面の崩壊形態
		(911),振動エネルギー
		を用いた安定度評価
		(912,913),鉄筋挿入工
		法の補強効果(914,915,
		916)
数值解析	5	盛土崩壊の予測(918),
		すべり・崩壊の挙動(919,
		920), 石積壁の変形解析
		(924,925)
危険度評価	7	崩壊範囲の評価 (917),
		被災要因分析 (921), 斜
		面の応答加速度分布
		(922),DEM を用いた安
		定性評価(923), 常時微
		動 (926,927),水平震度
		の推定(928)

7. 地盤防災-豪雨

(1)地すべり

7. 地盤防災 - 豪雨

(2) 斜面安定

表 研究分野の分類(18編)

発表 内容

項目

GIS・データベー

ス

(独) 労働安全衛生総合研究所 伊藤 和也

中部大学 杉井 俊夫

による崩壊形状(988),谷 埋め盛土の地下水位タン クモデル(989),遠心場 降雨実験(992),主成分 分析法による維持管理

地盤の液状化履歴(984),

先行降雨と地震(993)

(例)	耒	研究分野の分類	(17	編)
`	1/3/	~~	MI 7 673 23 67 73 75	(1 /	Nylm /

(例)表	研究分	予野の分類(17 編)
項目	発表	内容
	件数	
地すべり強度	6	残留強度に及ぼすせん断速
		度効果(959),第四紀大阪層
		郡地すべりの物理特性
		(961)・すべり面強度(960),
		不飽和土の残留強度(962),
		ネパールの雲母類含鉱物と
		地すべり強度の相関 (963),
		三渓ダム流域の高速地すべ
		IJ (964),
斜面の安定解析	5	弾塑性 FEM (968), 周縁部
		強度を考慮した三次元安定
		解析(969),極限平衡法によ
		る三次元安定解析(970,
		971),岩盤すべりの事例解析
		(972)
対策工の事例報告	5	メコン川流域の軟弱粘性土
		斜面の安定性(965),台風に
		よる斜面崩壊の対策事例
		(967),グランドアンカーの
		初期定着力(973),法面保護
		工の維持補修(974),岩盤地
		すべりの対策事例 (975)
その他	1	地震被害と地盤特性の関係
		(966)

	件数	
現地調査	4	護岸の崩壊原因(976),噴
		火後の現状 (977), 簡易
		斜面防災対策(978),間隙
		水圧観測 (983),
調査法・技術開発	4	地盤のゆるみ評価(979,
		980),簡易的貫入試験の
		ロッド長さの影響(985),
		土層強度検査棒の有効性
		(991)
模型実験・数値解	8	逆解析による地下水位推
析		定(981),まさ土斜面の安
		定性(982),表層飽和度と
		地下水位の関係 (986),
		排水不良の鉄道盛土への
		影響 (987), 数量化理論

7. 地盤防災 豪雨

(3)流動変形・崩落

8. 地盤環境

(1)調査・評価・処理技術

埼玉大学 小田 匡寛

大成建設 樋口 雄一

表 研究分野の分類(17編)		表 研究分野の分類(38編)			
項目	発表	内容	項目	発表	内容
	件数			件数	
浸透流と斜面安	3	· 飽和 不飽和浸透流解析	調査・評価技術	10	品質管理(1026、1027、
定		堤防河川の安定性			1035) 微生物浄化時のモ
		・ 地形・地下水挙動と斜面の			ニタリング(1028、1029)
		危険度評価			バイオアッセイ(1030)
		・ 浸透流と盛土斜面			迅速分析·簡易分析(1031
斜面の崩壊・流動	4	・ SPH の適用性			~ 1034)
解析		・ DEM による土石流解析	重金属処理技術	20	ふっ素の不溶化 (1036~
		・ DEM による実岩盤斜面崩			1038)、砒素の不溶化
		壊解析			(1039、1040) 鉛の不溶
泥流・土石流	3	・ マヨン火山の泥流被害			化(1041~1044) 六価ク
		・ 土石流の損失エネルギー			ロムの不溶化(1045)吸
		・ 土石流の到達距離			着(1046、1047), 分級洗
落石防護壁の性	2	・実大規模実験			浄の改良(1048) 植物浄
能評価		• 非線形解析			化(1049、1050) 移行特
地盤・斜面崩壊の	5	· 岩盤崩壊気候			性(1051、1054、1055)
ケーススタディ		・雪代被害			リサイクル材の評価
_		・ 老朽化トンネルの修復			(1052, 1053)
		・ 路線下陥没箇所の地盤構	有機化合物処理	8	ダイオキシンの無害化
		成・物性	技術		(1056) ダイオキシンの
		・ 線路下陥没挙動の推定			固化(1057) ダイオキシ
			•		ンの分離(1058,1059)
					油分の浄化(1060、1061)
					VOC の浄化(1062), PCB
					の抽出・無害化(1063)

(3) その他の環境評価

8. 地盤環境

(2)処分場と遮水技術

佐賀大学 日野 剛徳

京都大学 勝見 武

表 1 研究分野の分類(27編)

大項目	小項目	内容		
遮水壁(4 編)		ソイルベントナイトの施工事		
		例*(1064) ソイルベントナ		
		イトの耐化学性(1065)、ソイ		
		ルセメントの配合と遮水性		
	_	(1101, 1102)		
処分場遮	粘土系遮	ベントナイト混合土への熱の		
水工(9	水材(4編)	影響(1066) ベントナイトブ		
編)		ロックの開発と遮水性		
		(1068)脱水ケーキの遮水材		
		への有効利用(1069)、変形追		
		随性遮水材の開発と適用*		
		(1091)		
	ジオシン	ジオシンセティックスの引張		
	セティッ	り挙動(1090)、遮水シートの		
	クス遮水	引き抜き特性(1093)		
	材(2編)			
	遮水材の	ライナーの性能評価(1067)		
	性能評価	鋼管矢板の遮水効果(1092)		
	(2編)			
	施工事例	遮水工施工事例*(1103)		
(1編)				
	基礎工が粘	サンドドレーン改良の影響		
	性能に及ぼ	(1070、1071) 杭打設の影響		
す影響(3)		(1072)		
	、 ーシステム	覆土層の土壌浸食(1098) キ		
(4編)		ャピラリーバリア(1099) 繊		
		維混合の効果(1100) 微生物		
1		代謝の活用(1104)		
廃棄物地	地盤特性	廃棄物の変形特性(1089)廃		
盤と管理	(2編)	棄物斜面の安定性(1105)		
(7編)	水収支・浸	海面処分場の水収支解析*		
	出水処理	(1094) 排水暗渠の効果		
	(4編)	(1095)電解法による浸出水		
		処理効果(1096、1097)		
	透気性(1	廃棄物地盤の透気性*(1106)		
	編)			

^{*}印は現場の計測や施工を含むもの

表 研究分野の分類(25編)

項目	発表	内容
	件数	
濁水・堆積物 改	8	濁水・脱水処理技術
良・評価		(1073,1074), 環境改善
		のための材料開発
		(1075,1079,1080),流域
		環境改善のための調
		査・実験
		(1076,1077,1078)
沿岸環境	8	底質(浅場~深場)の環
		境負荷(1081,1082), 干
		潟(浅場)の創出工法
		(1083),底質(湖沼)
		の環境負荷(1084),干
		潟(浅場)の環境評価
		(1085,1086), 底質(深
		場)の有効利用(1087),
		沿岸の環境保全(1088)
自然環境・地盤振	9	遺跡保存におけるキャ
動 調査・評価		ッピング技術・調査
		(1107,1108),地球温暖
		化対策における木杭の
		有 効 利 用 調 査
		(1109,1110,1111),火山
		災害に伴う災害廃棄物
		の調査 (1112), ヒート
		アイランド対策におけ
		る保水性舗装材の開発
		(1113), 震動伝播・遮
		断における模型・原位置
		実験(1114,1115)