ベントナイトの力学挙動に 関して(ミクロな視点)

茨城大学工学部都市システム工学科 小峯秀雄

高レベル放射性廃棄物地層処分施設

本施設は、地下300m~1000mの深い岩盤に建設される予定

沿岸部での施設設計の可能性

ベントナイト系緩衝材の設計において

- 応力条件に対応する設計だけでは不十分
 地下水の水質環境
- ■地温や崩壊熱に起因する温度環境
- 他の部材(コンクリートなど)が形成する化学 的環境
- 不飽和から飽和に至る長時間
 さらに長時間環境における材料の変化
 などなど・・・

緩衝材の要件項目			時間軸(年) 0 100前後 250 1 000					
要件項目	要件項目内容	カテゴリ※	0/P定置前 <u>操業期間</u> ←	0/P定置 - 不飽和	緩衝材況 地下水0/I → ↓ ←	፪ 200 受水 ○接触	0/Pの言 対象期 ───_ 飽和 ──	役計 間→
①止水性	地下水の移動を抑制すること	А					1 1 1	
②自己シール性	緩衝材ブロック間および緩衝材と周 辺岩盤とのすき間を充填すること	А	-				- 	-
③核種収着性	核種移行を遅延すること	А					 	
④熱伝導性	廃棄体の発熱によりバリア機能が低 下するほどのバリア内の温度上昇を 抑制すること	в				<u> </u>		
⑤化学的緩衝性	ベントナイト間隙水のpHを適正に維持すること	С					1 1 1 1	1
⑥オーバーパック支持性	オーバーパックを固定支持すること	в					 	
⑦応力緩衝性	オーバーパック腐食生成物により生 じる応力、周辺岩盤から人エバリア にかかる応力を緩和すること	в						
⑧透気性	オーバーパックの腐食により生成す るガスによる、人エバリア破過およ び核種放出率の上昇を防止すること	в						
⑨コロイド透過性	コロイドを濾過すること	А						
⑩長期健全性	長期にわたりバリア機能が低下する ほど変質、流出しないこと	С					 	
⑪製作・施工性	製作、定置上の容易性、経済性を満 足すること	А						1 1 1 1 1

※ カテゴリA:緩衝材単独として設計する要件項目。

カテゴリB:人工バリアシステム全体の設計において考慮する要件項目。 カテゴリC:性能評価等において確認する要件項目。 参考文献:(財)電力中央研究所,電気事業連合会: 高レベル放射性廃棄物地層処分の事業化技術,1999.

参考文献: (財)電力中央研究所, 電気事業連合会: 高レベル放射性廃棄物地層処分の事業化技術, 1999.

加水後の状態

透水係数理論評価式の提案

化学分析や電子顕微鏡観察も

電子顕微鏡(電中研保有)観察

粘土鉱物分析

膨潤特性の 理論評価式

コロイド化学,土壤物理学,粘土科学と 地盤工学のコラボレーションの必要性 ■コロイド化学,土壤物理学や粘土科学では, 周辺の応力条件にみならず、粘土粒子の温 度や水質などの環境条件に影響について研 究展開がなされてきた. ■ 拡散二重層理論や分子動力学, イオン交換 反応などについて、研究展開がなされた. ■ただ、材料設計という視点がやや弱い. ■「地盤工学とのコラボレーションによって、メカ ニズムに立脚した材料設計

- Komine, H. : Theoretical equations on hydraulic conductivities of bentonite based buffer and backfill for underground disposal of radioactive wastes, *Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers (ASCE)*, Vol. 134, No. 4, pp. 497-508, 2008.04.
- Komine, H. and Ogata, N.: Predicting swelling characteristics of bentonites, *Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers (ASCE)*, Vol. 130, No. 8, pp. 818-829, 2004.08.
- Komine, H. and Ogata, N., New equations for swelling characteristics of bentonite-based buffer materials, *Canadian Geotechnical Journal*, Vol. 40, No. 2, pp. 460-475, 2003.04.
- Komine, H. and Ogata, N., Experimental study on swelling characteristics of sand-bentonite mixture for nuclear waste disposal, *Soils and Foundations*, Vol. 39, No.2, pp83-97, 1999.04.
- Komine, H. and Ogata, N., Prediction for swelling characteristics of compacted bentonite, *Canadian Geotechnical Journal*, Vol.33, No.1, pp.11-22, 1996.02.
- Komine, H. and Ogata, N., Experimental study on swelling characteristics of compacted bentonite, *Canadian Geotechnical Journal*, Vol.31, No.4, pp.478-490, 1994.08.