第2回調査団全体会合 2017年9月3日 2017年九州北部豪雨 - 2017年7月5日-

福岡大学 水循環・生態系研究所 守田 治

1.気象状況 2017年7月5日15:00の天気図

- 九州7月4日09:00、台風3
 号が北部を通過し、5日
 03:00に関東の東海上に抜けた。
- ・ 台風3号の東進に伴い、その北に形成されていた梅雨前線が南下し始めた。
- 梅雨前線は7月5日12:00に 九州北岸にかかり、7月6日 21:00まで、ほぼ同じ位置 に停滞し続けた。

2. レーダ画像1 7月5日00:00~21:00のレーダ画像(3時間毎)

レーダ画像によると、5日 03:00~09:00. 梅雨前線上 で線状降水系が形成され活発 に活動した。

 5日12:00ころから梅雨前線 の南数10km付近でメソβ線 状降水系が形成され始め、6 日09:00ころまで活動を続け た、

 5日15:00ころメソβ線状降 水系の活動は最も活発で、朝 倉付近では2本のメソβ線状 降水系の合流が見られた。

3. 気象衛星赤外画像 2017年7月5日 15:30

- メソβ線状降水系が掛った 地域で集中豪雨が起こった
 、特に日降水量が多かった
 地点は次に挙げる.
- 朝倉 516.0mm
- 英彦山 248.0mm
- 耶馬渓 255mm
- **日田 336.0mm**
- _ 豊後大野 233.0mm
- 南小国 223.0mm

5.1 朝倉の1時間降水量と積算降水量 7月4日~6日,最大降水量129.5mm(14:38~15:38)

5.1日田の1時間降水量と積算降水量 7月4日~6日,最大降水量84.0mm(17:40~18:40)

50.0mm以上の降水 (16:10~20:10)

6. 集中豪雨の気候学的背景① 50mm/hrを越える降水の発生回数の変化

- 1976年~2008年のアメダス観 測に基づく1時間50mm以上の 降水の発生回数を示す。
- ただし、アメダス観測点はか 1976年にはおよそ1100点だっ たが、1979年にはおよそ1300 点に増え、現在に至っているため 、発生回数は観測点1000点あ たいの値に規格化している。
- 全期間を第1期(1976年~ 1986年),第2期(1987年~ 1997年),第3期(1998年~ 2008年)に分割し、それぞれの 期間の発生回数の平均値(分散) を求めた。

- 第1期:160.4回(43.5回)
- 第2期:177.5回(58.5回)
- 第3期:237.8回(59.0回)
- 第1期と第2期の発生回数の間 には統計的に有意な差はない。
- 第2期と第3期の発生回数の間
- には95%以上の有意水準で差がある.
- 第1期と第3期の発生回数の間
- には99%以上の有意水準で差がある.
- 地球温暖化に伴って短時間降水 量が増加している。

6. 集中豪雨の気候学的背景② 50mm/hrを越える降水の発生頻度

時間雨量50mm以上の降雨の出現頻度

6. 集中豪雨の気候学的背景3 1時間最大降水量が90mm以上の起生数1

- 第1期:1976年~1985年
 第2期:1986年~1995年
 第3期:1996年~2005年
 第4期:2006年~2015年
 起生数の平均値は
 - 第1期: 4.1回
 - 第2期: 3.8回
 - 第3期: 9.4回
 - 第4期:13.2回
- 第1期と第2期の起生数の平均 値の間には統計学的に有意な差 はない。

- 第2期と第3期の平均値の間、 第3期と第4期の平均値の間に は99%以上の有意水準で統計的 有意差がある。
- 1時間最大降水量90mm以上の 降水現象の起生数は、年々変動 はあるものの、10年ごとの平均 値には直近の20年で明瞭な増 大傾向が見られる。
- 特に1998年以降、起生数は急
 速に増大している。
- 1時間最大降水量90mm以上の 降水現象の起生数の経年増大の 原因は地球温暖化と考えられる

6. 集中豪雨の気候学的背景④ 1時間最大降水量が90mm以上の起生数②

集中豪雨のメソ気象学的背景 2本のメソβ線状降水系の合流

- 梅雨前線の南,数10km でメ ソβ線状降水系の活動が強ま った.
- さらに朝倉付近で2本のメソβ 線状降水系の合流が起こった.
- 2本のメソβ線状降水系の合 流現象は2012年7月14日の 九州北部豪雨(黒木付近)でも 起こっていた。
 - 5年の間隔で続けて2度の合流 が偶然に起こったとは考えにく く、合流が起こった原因として 背振山系と耳納山系の地形の 影響を考えるのが合理的であ ろう、

8. 2012年7月14日の集中豪雨との比較 8.1 2012年7月14日の降水量分布

- 梅雨前線は0:00ころから 九州北部を南下し、14: 00から北上し、19:00こ ろ対馬海峡に達した。
- 日降水量
- ハ女市黒木:415.0mm
- 久留米市耳納山:232.0mm
- 添田市添田:279.0mm
- 添田市英彦山:225.5mm
- 日田市日田: 237.0mm
- 日田市椿ケ鼻:368.5mm

8.2 レーダ・エコー図 2012年7月14日03:00,05:30

8.3 八女市黒木の降水量の変化(10分毎の値) 7月12日~14日,前1時間降水量&積算降水量

127.0mm (14:40[°]15:40)

8.4 気象衛星赤外画像 2012年7月14日 08:30

9.1 北部九州の集中豪雨の比較(2009年以降) 1時間最大降水量

起生年	降水量(mm)	起生地点	起生月日時	降水機構
2009年	61.0	椿ヶ鼻	7/20 12:00	メソβ線状降水系
2012年	94.5	黒木	7/14 10:20	メソβ線状降水系 の合流
2012年	108.0	阿蘇乙姫	7/12 05:53	メソβ線状降水系
2013年	76.5	阿蘇乙姫	8/25 07:30	地形性線状降水系
2017年	129.5	朝倉	7/05 15:42	メソβ線状降水系 の合流

9.2 北部九州の集中豪雨の比較(2009年以降) 3時間最大降水量

起生年	降水量(mm)	起生地点	起生月日時	降水機構
2009年	111.5	椿ヶ鼻	7/20 12:10	メソβ線状降水系
2012年	174.5	黒木	7/14 10:20	メソβ線状降水系 の合流
2012年	288.5	阿蘇乙姫	7/12 05:00	メソβ線状降水系
2013年	134.5	阿蘇乙姫	8/25 07:30	地形性線状降水系
2017年	261.0	朝倉	7/05 15:40	メソβ線状降水系 の合流

9.3 北部九州の集中豪雨の比較(2009年以降) 日最大降水量

起生年	降水量(mm)	起生地点	起生月日時	降水機構
2009年	187.5	椿ヶ鼻	7/20	メソβ線状降水系
2012年	415.0	黒木	7/14	メソβ線状降水系 の合流
2012年	493.5	阿蘇乙姫	7/12	メソβ線状降水系
2013年	254.5	阿蘇乙姫	8/25	地形性線状降水系
2017年	516.0	朝倉	7/05	メソβ線状降水系 の合流

10. 地球温暖化が気象に及ぼす影響

- 1. 気温上昇に伴う飽和水蒸気圧の上昇 可降水量が増加する
- 2. 高度による昇温の相違 地表付近ほど昇温が大きく、成層圏では降温となる、 ↓ 大気の成層状態が不安定になる(逆さにしたダルマ).
 - 対流活動が活発になる.
- 3. 大陸と海洋の昇温の相違
 - 夏季:大陸と海洋の温度差が拡大→モンスーンが強まる 冬季:大陸と海洋の温度差が縮小→モンスーンが弱まる

10.1 単位体積に含まれる水蒸気量

- 1. 飽和水蒸気圧は温度によって大きく変化する
- 2. 0°Cで4.8g 10°Cで9.3g 20°Cで17.1g 30°Cで30.1g
- 3. 空気中の含まれる水蒸気 量を可降水量という. すな わち、雨になることのでき る水の量は、温度上昇とと もに急速に増加する.

10.2 大気成層状態の不安定化 Manabe & Weatherald (1967)

- 1. CO₂濃度が 150,300,600ppmの場合 の気温分布.
- 2. CO2濃度が上昇すると、 大気下層で昇温が大きい。
- 3. 対流圏界面付近(高度約 10km)では±0℃.
- 4. 成層圏では温度が下がる . CO2を初めとする温室効 果ガスが増加すると、熱が 大気下層に溜められる.
- 5. 大気の成層状態が不安定になり、強い対流が起こる.

10.3 大陸と海洋の昇温の差1

10.3 大陸と海洋の昇温の差 2

2001年12月~2002年11月

Surface Temperature Anomaly (°C): Meteorological Year Mean

-4 -2.5 -1.5 -1 -.5 -.2 .2 .5 1 1.5 2.5 4

10.3 大陸と海洋の昇温の差3 夏季はモンスーン循環が強まる!

