Vietnam-Japan Workshop on Geotechnical Design and Practice in Ho Chi Minh City, Sep. 25, 2015

Characteristics of soluble mixtures

Truong, Q. Hung

Ho Chi Minh City University of Technology

Outline

- Geo-soluble mixtures
 - Introduction
 - Testing
 - Numerical Modeling
 - Summary

Introduction

- Soil naturally contains grains of different mineral → dissolved
- Dissolution → change microstructure:
 - ↑ local void + permeability
 - influence the safety

St. Francis Dam Failure

The small strain stiffness of soluble mixtures modeled by sand-salt mixtures with various salt volume fractions.

Outline

- Geo-soluble mixtures
 - Introduction
 - Testing
 - Numerical Modeling
 - Summary

Materials

Jumunjin Sand

Salt

	G _s	D ₅₀ (mm)	S	R
Sand	2.62	0.36	0.65	0.7
Salt	2.16	0.25	0.73	0.27

Mean grain size of sand particles ≈ 1.5 times larger than that of salt particle

Experimental setup

- The effect of dissolution micro to macro mechanical behavior of mixtures implementing S-wave measurement.
- BE top cap & bottom plate

Test procedure

- Soluble mixtures prepared different salt content- volume fraction
 - Salt fraction: sf = V_{salt}/V_{sand} (%)
 - Specimens with sf = 0, 2, 5, 7, & 10 %
 - 5 layers, tamping (same energy)
- 3 stages: loading unloading reloading with time interval:
 - Loading unloading stage: 30 minutes
 - Saturation stage: 1000 minutes
- Stress for saturation: used NaCl 0.01 different confining stresses
- Shear wave measurement: at the end of loading step

Vertical strain - Saturation

- Vertical strain of 2 mixtures with 10% initial salt fraction
- 1: no dissolved
- 2: dissolved at 160kPa
- Before saturation:
 - identical behavior
- After saturation:
 - ε_ν 1

Vertical strain - Different vertical stresses

- Vertical strain: mixtures
 10% initial salt fraction –
 saturated different
 stresses.
- Dissolved at various σ_v^s = 40 ~ 320kPa
- As the planed stress increase, the total vertical strain increase:
 σ_v↑ ε_v↑

Vertical strain – Different salt fractions

- Specimens: different initial sf: 0~10%
- Saturated at σ_v =160kPa
- sf \uparrow ϵ_{v} \uparrow
- ∴ Total volume ↓ after dissolution
- ... Specimens seems to be getting stiffer

Void ratio – Saturation

- Change of void ratio for 2 mixtures –10% sf
- 1: no dissolved
- 2: dissolved at 160kPa
- Before saturation:
 - Same behavior
- After saturation:
 - e ↑↑ ← dissolution of salt particles

Void ratio – Different vertical stresses

- Change of void ratio of the mixtures - 10% sf
- Saturated at different $\sigma_v^s = 40 \sim 320 \text{kPa}$
- Before saturation:
 - Same behavior
- At saturated stress:
 - σ_v↑ e ↓ : lower
 saturated stress –
 higher void ratio

Void ratio - Different salt fractions

- Evolution of void ratio –
 mixtures 0 ~ 10% sf
- Saturated: $\sigma_v^s = 160 \text{kPa}$
- Before saturation:
 - Same behavior
- At saturated stress:
 - sf↑ e ↑ : higher initial sf, higher void ratio
- Specimens getting loosen due to the dissolution

S-wave velocity - Different vertical stresses

- Shear wave velocities –
 specimens 10% initial sf
- Saturated at different
 σ_v^s₌ 40 ~ 320kPa
- V_s ↓ due to dissolution
- V_s after sat. collapses to
 1 single line
- Vs \downarrow about 26%~19% at $\sigma_v^s = 40 \sim 320 \text{kPa}$

S-wave velocity – Different salt fractions

- Shear wave velocities
 specimens: 0 ~ 10%
 initial sf
- Saturated at fixed σ_vs:160kPa
- Decrement of V_s proportional to the initial sf

Discussions

Shear wave velocities can be expressed in term – effective stress

$$V_{s} = \alpha \left(\frac{\sigma'_{0}}{1kPa}\right)^{\beta} = \alpha \left(\frac{\sigma'_{p} + \sigma'_{m}}{2kPa}\right)^{\beta} = Af(e) \left(\frac{\left(1 + K_{o}\right)\sigma'_{p}}{2kPa}\right)^{\beta}$$

- σ'_p & σ'_m effective stress in direction of wave propagation & of particle motion
- α, β & A: experimentally determined
- β: relates to contact behavior of media size, structure, shape of particles
- α: represents type of packing (porosity coordination number), the properties of grain materials & fabric changes

$$f(e) = \frac{2.97 - e}{\sqrt{1 + e}}$$
 (Hardin and Drnevich, 1972)

Discussions

- Investigation of A & f(e) → mechanical behavior of mixtures after dissolution
- Shear wave velocity vs. σ' specimens 10% sf \rightarrow collapse 1 single line

- e ↑ ≈ 21%
- α : 86 \rightarrow 54
- f(e) ↓ 11%
- ∴ A ↓ 30%
- ∴ A-factor ↓ implies a loss of the particle contact after dissolution.
- $\rightarrow \beta \uparrow \alpha \downarrow$ loosen specimens.

Outline

- Geo-soluble mixtures
 - Introduction
 - Testing
 - Numerical Modeling
 - Summary

Sample Preparation

DEM (PFC2D) used to modeling soluble mixtures in K_o loading condition

- $d_{sand} = 0.36 \text{mm}$, $d_{salt} = 0.25 \text{mm}$
- $k_n = 10^8 \text{ N/m}$, $k_s = 5 \times 10^7 \text{ N/m}$
- $\rho = 2650 \text{kg/m}^3$
- sf = 10%

- Simulation: created walls, generated particles, equilibrium state, consolidated to desired stress level: 160kPa
- Dissolved particles by slowly reducing radii of soluble particles : 0.9999

Stress - strain - Numerical simulation

Stress – Strain

After saturation:

ε_ν ↑

∴ Total volume ↓ after dissolution

Stress – Void ratio

After saturation:

Specimen getting loosen

Discussion – Fabric, force chain

No dissolution

Discussion – Fabric, force chain

Dissolution

160Kpa

 $R/R_{o} = 1.0$

$$R/R_{o} = 0.67$$

Discussion – Coordination number

Coordination Number

$$c = \frac{2M_{pp} + M_{pw}}{N}$$

Outline

- Geo-soluble mixtures
 - Introduction
 - Testing
 - Numerical Modeling
 - Summary

Summary - stiffness characteristics

- Artificial specimens : sand-salt with various salt fraction
- Experiments in conventional oedometer cell + BE
- After dissolution,
 - Vertical strain increases
 - Void ratio increases
 - Shear wave velocity decreases
- The changes is proportional with initial salt fraction
- Dissolution → increase of void ratio and reduce particle contact
- DEM simulations :
 - same trend as experiments
 - show inside process of the soluble mixtures