第 回地盤工学研究発表会総括表

2. 調査・分類
(1)物理探査・可視化・サウディング

<table>
<thead>
<tr>
<th>表 - 研究分野の分類（「地層判別・調査法等」）</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
</table>
| 表面波探查 | ☑ | 道路及び河川盤石での表面波探査
| 弾性波の伝播特性 | ☑ | 波の位相差などによる宅地の不均一性評価
| 音響トモグラフィ | ☑ | 杭の支持力の可視化
| 電気探査 | ☑ | マルチ送信比抵抗探査の開発
| 三次元化 | ☑ | 三次元岩石分類
| スウェーデン | ☑ | 土木小構造物に適用
| 動的コーン貫入試験 | ☑ | 連続打撃貫入試験
| 静的コーン貫入試験 | ☑ | 無線コーン
| 新しいサウディング調査法 | ☑ | 動的貫入付静的コーン
| 原位置試験 | ☑ | せん断摩擦試験

（例）表 研究分野の分類（「編」）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>地層判別・地質構成</td>
<td>7</td>
<td>地盤定数の決定や判定 (30, 31, 36),地層判別・地質構成の定義 (52, 55),新岩盤分類法 (53)地表決定 (54)</td>
</tr>
<tr>
<td>調査法・採取法・センサー</td>
<td>10</td>
<td>サンプリング (39, 60, 61, 65),サウディング (57, 58, 61, 66)センサー (57, 62)</td>
</tr>
<tr>
<td>古墳・文化遺産の</td>
<td>10</td>
<td>海外事例 (67, 68, 72)</td>
</tr>
<tr>
<td>地盤工学的評価</td>
<td></td>
<td>石垣の安定 (69, 72, 74)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>古墳 (70, 71)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>古い土構造物 (75, 76)</td>
</tr>
</tbody>
</table>
地盤材料 - 粘性土

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物理・力学的性質</td>
<td>6</td>
<td>堆積環境（125，146，147，148），拡張フォールコーパ（143），底泥の沈降特性（144）</td>
</tr>
<tr>
<td>透水・圧密・膨潤特性</td>
<td>15</td>
<td>二次圧密（116，122），粘土（ペントナイド）の膨潤特性（117，118，138，139，142），温度・速度依存（119，136），サンプリングと試料の乱れ（120），圧縮・変形予測（121，126），クリープの影響（135），重金属イオンの影響（141），骨格構造モデル（145）</td>
</tr>
<tr>
<td>弾性(応)力関数・動的特性</td>
<td>13</td>
<td>品質評価（123），練返し粘土（124），受信波形シミュレーション（149），湖成・海成粘土（150），混合土（砂・シルト・粘土（151，157，158，159）），超軟弱粘土（152，153），自然堆積粘土の異方性（154），ベンフィオイド（155），原位置・室温試験（156）</td>
</tr>
<tr>
<td>強度特性</td>
<td>18</td>
<td>【試験手法】摩擦・粘性・温度依存（97，98），表層粘着力（103），引張り強度（105），Ko圧密（106），カーボンソイルの亀裂発生（112）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>【速度，時間，寸法効果】Ko圧密非排水せん断（107，110，134），強度増加率（108），一面せん断（109）クリープ（99），自然堆積粘土（100），セメント混合土（101），残留強度の温度依存（102），原位置強度推定（104），異方性（111），不確かさ（140）</td>
</tr>
<tr>
<td>数値解析</td>
<td>11</td>
<td>【解析手法】メッシュフリー（113），</td>
</tr>
</tbody>
</table>

三．地盤材料 - 中間土

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>メタノイドレート（採取試料・原位置の特性）</td>
<td>4</td>
<td>表層型 MH のベース強度と物理的性質（170），表層型 MH の一軸圧縮と CRS（171），表層型 MH 地盤の現地解析（172），大水深（175）</td>
</tr>
<tr>
<td>メタノイドレート（人工試料の特性）</td>
<td>4</td>
<td>解離沈下（160），分解時力学特性（161），生成・分解と力学特性（173），三軸試験（174）</td>
</tr>
<tr>
<td>メタノイドレート（シミュレーション）</td>
<td>2</td>
<td>三軸圧縮試験（162），多層地盤（163）</td>
</tr>
<tr>
<td>細粒分混じり砂</td>
<td>4</td>
<td>液状化強度（165），強度・等価骨格間隙比（166），強度・戴荷速度（167），強度・細粒分合率（176）</td>
</tr>
<tr>
<td>砂・礫</td>
<td>2</td>
<td>不安定挙動シミュレート（164），最大粒径と供試体寸法（168）</td>
</tr>
<tr>
<td>その他</td>
<td>3</td>
<td>実測土のせん断波速度・拘束圧（169），Ca 砂の微生物膜透（177），山砂の透水性（178）</td>
</tr>
</tbody>
</table>

地盤材料 - 砂質土

東北大学 風間 基樹

研究内容の分類

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>強度</td>
<td>3</td>
<td>洪積砂の変形強度分布特性 (206)</td>
</tr>
<tr>
<td>变形</td>
<td>3</td>
<td>振返し液状化・圧密過程での力学特性の変化 (207)</td>
</tr>
<tr>
<td>動的性質</td>
<td>3</td>
<td>連成数値解析モデル (208)</td>
</tr>
</tbody>
</table>

表 研究分野の分類 (17編)

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>砂質土</td>
<td>9</td>
<td>不摺乱砂質土の三軸圧縮特性 (209)</td>
</tr>
<tr>
<td>軟岩・硬岩</td>
<td>8</td>
<td>泥岩の風化 (210)</td>
</tr>
</tbody>
</table>

地盤材料 - 砂質土、軟岩・硬岩

中部電力㈱ 河村精一

研究内容の分類

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>強度</td>
<td>3</td>
<td>洪積砂の変形強度分布特性 (206)</td>
</tr>
<tr>
<td>变形</td>
<td>3</td>
<td>振返し液状化・圧密過程での力学特性の変化 (207)</td>
</tr>
<tr>
<td>動的性質</td>
<td>3</td>
<td>連成数値解析モデル (208)</td>
</tr>
</tbody>
</table>

表 研究分野の分類 (17編)

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>砂質土</td>
<td>9</td>
<td>不摺乱砂質土の三軸圧縮特性 (209)</td>
</tr>
<tr>
<td>軟岩・硬岩</td>
<td>8</td>
<td>泥岩の風化 (210)</td>
</tr>
</tbody>
</table>
地盤材料 - リサイクル材料

表 研究分野の分類（44編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>スラグ</td>
<td>6</td>
<td>力学特性(238、240、241、269、242)</td>
</tr>
<tr>
<td>タイヤチップ・木片チップ・発砲プラスチック</td>
<td>13</td>
<td>力学特性(243、244、245、247、248、249、250、255)、力学モデル(245)、動的問題(251、252、253、254)</td>
</tr>
<tr>
<td>石炭灰・焼却灰</td>
<td>9</td>
<td>物理化学的性質(256、257)、力学特性(258、260、261、262、263)、動的性質(259)、処理法(272)</td>
</tr>
<tr>
<td>湧泥土・浄水污泥・建設污泥</td>
<td>8</td>
<td>処理法(264、265、266)、材料特性(267、268、270、271、273)</td>
</tr>
<tr>
<td>その他</td>
<td>8</td>
<td>ガラスカレット(274)、亜鉛(275、279)、破砕コンクリート(278)、腐食石膏ボード(280)、キラ(281)</td>
</tr>
</tbody>
</table>

地盤材料 - 改良土・軽量土

（＋）現場への適用

表 研究分野の分類（17編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>管中混合固化処理士</td>
<td>6</td>
<td>強度のばらつき(302)、体積変化(303)、フロー角と圧送元圧(304)、打設時の均勾配(305)、コンクリート抵抗の評価(306)、損失を受けた処理士の強度特性(307)</td>
</tr>
<tr>
<td>流動化処理土</td>
<td>4</td>
<td>三軸試験、数値解析(311,312),管理方法(313),膨張剤混入の影響(314)</td>
</tr>
<tr>
<td>その他</td>
<td>7</td>
<td>湧泥改良土の盛土への適用(308)、カルシウムの溶脱特性(309)、固化士の含水比と粒度の影響評価(310)、浅層地盤改良における粉塵抑制対策(315)、まさ土の地盤改良への適用性(316)、安定処理土の凍結の影響(317)、ベトナムでのセメントスラリーを用いた固化改良の有効性(318)</td>
</tr>
</tbody>
</table>
地盤材料 - 改良土・軽量土
セメント改良土、薬液注入土

九州大学 笠間清伸

<table>
<thead>
<tr>
<th>項目</th>
<th>数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>セメント改良土</td>
<td>9</td>
<td>六価クロム(319), 压密養生(320, 321), セメント改良速度(322), 長期材齢(324), 中空ねじり(325), セメント改良(323, 326, 327)</td>
</tr>
<tr>
<td>薬液注入</td>
<td>7</td>
<td>超微粒子懸濁型改良材(328), 原位置試験(329), 液状化試験(330), 地盤改良効果(331), 髒粒分を含む力学特性(332), セメント改良速度(333), 膨潤性固化材(334)</td>
</tr>
<tr>
<td>リサイクル材</td>
<td>9</td>
<td>塩状高分子混合(335, 336), 繊維質材混合(337), ダイヤチップ(338), ダイヤチップ補強材(339), 貝殻混合(340, 341), 窯業副産物(342), 泥土+PS灰(343)</td>
</tr>
<tr>
<td>気泡混合処理土</td>
<td>10</td>
<td>短纖維(344), 短纖維+模型実験(345), 透水特性(346), 強度特性(347), 露出環境での強度特性(348, 349), 長期安定性+湿度(350), 模型実験(351), 発泡ビーズ(352), EPSビーズ+微小ひずみ(353)</td>
</tr>
</tbody>
</table>

3. 地盤材料
特殊土・不飽和土

北海道大学 石川 達也

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>特殊土</td>
<td>10</td>
<td>しらす(354, 355, 356), レゴリス(357, 358), 高有機質土(359, 360, 361, 362, 363)</td>
</tr>
<tr>
<td>水浸・凍結融解他</td>
<td>10</td>
<td>サクション浸水コラプス強度低下(364, 365, 366, 367, 368), 締固め材料判定(369, 370, 371), 破砕土凍結融解(372, 373)</td>
</tr>
<tr>
<td>不飽和土の力学特性</td>
<td>8</td>
<td>セルロース膜利用(374), せん断強度(375, 376, 377), 粒状体力学モデル(378), リングせん断試験(379), サクション効果(380), 粘弾塑性モデル(381)</td>
</tr>
<tr>
<td>不飽和土の動的性質</td>
<td>9</td>
<td>砂質土 ロック材(382, 383), シルト(384, 385, 386, 387), 飽和度変化(388, 389, 390)</td>
</tr>
</tbody>
</table>
4．地盤沈下

表-1 研究分野の分類（17編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>多次元圧密解析構成則</td>
<td>12</td>
<td>風土による挙動予測（391, 393, 395, 396, 397, 398）, 閉塞した中間砂層の影響（394, 401）, 残留沈下の要因検討（392, 403, 404, 405）</td>
</tr>
<tr>
<td>一次元圧密解析ひずみ速度</td>
<td>7</td>
<td>アイソタックモデルのVDへの適用（399）, 基準ひずみ速度の影響（400）, 二次圧密モデル（402, 414）, 神戸空港の長期沈下予測（406, 407）, 雑土のひずみ速度依存性（408）</td>
</tr>
<tr>
<td>地下水位の変動</td>
<td>4</td>
<td>地下水位回復による地盤隆起（410, 411）, 地下水位再低下による沈下量予測（416, 417）</td>
</tr>
<tr>
<td>構造物基礎の沈下</td>
<td>4</td>
<td>戸建住宅地盤の沈下予測（409）, 鉄道車輌基盤の変状（412）, コラムスラブ系基礎の沈下予測（413）, 不同次圧制工法（415）</td>
</tr>
<tr>
<td>切土・掘削</td>
<td>6</td>
<td>揚削時の斜面安定（422, 424）, 斜面崩壊の数値解析（423）, 砂混掘削溝壁の安定（425, 427）, 土留め揚削の降伏塑性解析（426）</td>
</tr>
</tbody>
</table>

表-2 研究分野の分類（37編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>土の凍上性</td>
<td>3</td>
<td>冷凍パワーパワ（471）, 不凍水水分量（475）, 火山灰質粘性土（478）</td>
</tr>
<tr>
<td>冷凍上対策工法</td>
<td>7</td>
<td>斜面（466, 467, 468, 469）, 断熱工法（472, 473）, 屋外実験（477）</td>
</tr>
<tr>
<td>構造物との相互作用</td>
<td>1</td>
<td>埋設チルドパイプ（476）</td>
</tr>
<tr>
<td>冷熱の利用</td>
<td>2</td>
<td>高圧比低下（470）, ヒートパイプ（474）</td>
</tr>
<tr>
<td>室内試験と解析</td>
<td>3</td>
<td>遠心力模型実験（479）, せん断実験結果の解析（480）, 熱的性質（481）</td>
</tr>
<tr>
<td>原位置試験</td>
<td>1</td>
<td>原位置三軸試験（482）</td>
</tr>
</tbody>
</table>

地盤改良

港湾空港技術研究所 北詰 昌樹

表 研究分野の分類（38編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>帯固め</td>
<td>9</td>
<td>静的帯固め工法（428, 429, 530, 431, 432, 436）, グル圧入工法（433）, SCP地盤挙動（434）</td>
</tr>
<tr>
<td>複合地盤・薬液注入</td>
<td>9</td>
<td>SCP改良地盤挙動（437, 438, 441）, DMM改良地盤挙動（439, 440）, 止水効果（442, 443）, 新しい固化工法（444, 445）</td>
</tr>
<tr>
<td>固化改良他の</td>
<td>11</td>
<td>複合地盤挙動の評価（446, 447, 451, 452, 455）, 施工報告（450, 456）, 複合地盤等価せん断波評価（448, 449）, 施工時の地盤変状（453, 454）</td>
</tr>
<tr>
<td>排水工法</td>
<td>9</td>
<td>施工工法（457）, 真空圧密地盤挙動の評価（458, 459, 460, 461, 462, 465）, 脱水工法（463, 464）</td>
</tr>
<tr>
<td>項 目</td>
<td>発表件数</td>
<td>内 容</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>地下水流動・地下水調査</td>
<td></td>
<td></td>
</tr>
<tr>
<td>広域地下水の環境問題</td>
<td>4</td>
<td>大深度間隙水圧測定（504）、深井戸（505）、海岸地域の地下水位変動（507）、三次元水循環モデル（512）</td>
</tr>
<tr>
<td>地下水流動保全対策</td>
<td>2</td>
<td>影響図半径（503）、植物の生育阻害（508）</td>
</tr>
<tr>
<td>調査方法の開発</td>
<td>2</td>
<td>溶存メタンの原位置測定（506）、透水係数の異方性（509）</td>
</tr>
<tr>
<td>地盤浸透、安定問題</td>
<td>2</td>
<td>斜面内の土中水分量変化（510）、堤体内の水位観測（511）</td>
</tr>
<tr>
<td>地盤浸透（飽和土）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流動特性・透水性の測定、試験方法の提案</td>
<td>5</td>
<td>有機系廃棄物蒸発液（513）、ベントナイト（514）、ジオゲリッド補強土（516.517）、境界近傍の透水特性（522）</td>
</tr>
<tr>
<td>透水係数の推定・評価</td>
<td>2</td>
<td>透水異方性（515）、透水係数の推定式（515）</td>
</tr>
<tr>
<td>浸透破壊・河川堤防</td>
<td>3</td>
<td>橋梁型排水路（519）、砂粒子の移動特性（520）、越流を考慮した浸透流解析（521）</td>
</tr>
<tr>
<td>地盤浸透（不飽和土）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>浸透特性</td>
<td>4</td>
<td>数値力学モデル（523）、原位置透水試験（524）、豪雨時の浸透特性（528）、しらす（532）</td>
</tr>
<tr>
<td>浸透破壊</td>
<td>4</td>
<td>Smoothed Particle Hydrodynamics 法（525）、気泡挙動の画像解析（526）、河川堤防（531）、進心模型実験（533）</td>
</tr>
<tr>
<td>不飽和浸透流</td>
<td>3</td>
<td>雨水浸透ホク（527）、画像解析による飽和度測定（529）、薬液注入（530）</td>
</tr>
<tr>
<td>岩盤浸透・移流拡散・透気性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>移流拡散（熱）</td>
<td>1</td>
<td>地下水流速（532）</td>
</tr>
<tr>
<td>岩盤浸透</td>
<td>3</td>
<td>セメントグレート（535）、長時間透水試験（536）、割れ目幅の計測（537）</td>
</tr>
<tr>
<td>透気性</td>
<td>3</td>
<td>河川堤防（538）、二酸化炭素の帯水層貯蔵（539）、飽和砂層への空気圧入（540）</td>
</tr>
</tbody>
</table>
表 研究分野の分類（Ⅰ編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ダム・堤防の耐震</td>
<td>□</td>
<td>地震被害と復旧（りんぞく），耐震事例と補強対策（れきしゅう），振動台実験・数値解析（じゅけいしゃく），ロックフィルダムの地震時すべり変形量（せんびりかがいきょう），遠心橋での堤防浸透破壊実験・粒状体個別要素法解析（じゅっけいしゃく），既設アースダムの形式と構造（じゅっけいしゃく），矢板工法による側方変位対策法（そくほうかんいたいさく）</td>
</tr>
<tr>
<td>ダム・堤防の浸透・変形</td>
<td>□</td>
<td>フィルダムコア透水実験（じゅっけいしゃく），ロック材料の低拘束圧条件下での強度特性（きょうどけいしゅつ），大型模型実験（たいおうきょうがいじゅくせん），一次元変形特性（いちじゅんがんへんがいせいしゅつ），堤防浸透・変形連成解析（てんけいれんじょうかく）</td>
</tr>
<tr>
<td>ダム・堤防の施工・維持管理</td>
<td>□</td>
<td>加速度応答解析によるフィルダム管理手法（かく度こうどうかくせき），越流許容型ため池工法（えつりゅうきょうせいつみこうほう），河川堤防の点検評価法（てんけんへいかけほう），堤防安定度評価の模型実験（ていぼうてんじどへいかくのきょうがいじゅくせん），ため池の汱用リスクによるライフサイクルコスト（りふくいきゅうくろすき）堤体下部の土圧挙動（どじょうどう），ため池底権の漏水防止模型実験（どじょうどう）</td>
</tr>
</tbody>
</table>

（財）鉄道総合技術研究所_小島_貴一

表 研究分野の分類（地盤と構造物-土構造物(2)）（Ⅰ編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>耐震（材料特性）</td>
<td>1</td>
<td>動的強度特性（しょうどく）</td>
</tr>
<tr>
<td>耐震（挙動・力学）</td>
<td>3</td>
<td>浸透水位の影響（にゅうずい）</td>
</tr>
<tr>
<td>耐震（対策工）</td>
<td>4</td>
<td>盛土の耐震対策（じょうどのさいせんたいさく）</td>
</tr>
<tr>
<td>施工・管理（土の評価）</td>
<td>2</td>
<td>ローム（りゅう），せいりょう（せいりょう）</td>
</tr>
<tr>
<td>施工・管理（締固め）</td>
<td>2</td>
<td>重鋼による締固め管理（じゅつきめ）</td>
</tr>
<tr>
<td>施工・管理（管理手法・予測手法）</td>
<td>3</td>
<td>試験盛土による評価（じゅっこうじょうどによるはいばい）</td>
</tr>
<tr>
<td>施工・管理（パラスト軌道構造）</td>
<td>2</td>
<td>新しいパラスト軌道構造（しんしゅうパラストきどうこうぞう）</td>
</tr>
</tbody>
</table>

（財）鉄道総合技術研究所_小島_貴一
<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>拡底基礎の支持力 (582), 先端閉塞効果と支持力(583)</td>
<td>11</td>
<td>拡底基礎の支持力 (582), 先端閉塞効果と支持力(583)</td>
<td>拡底基礎の支持力 (582), 先端閉塞効果と支持力(583)</td>
<td>11</td>
<td>拡底基礎の支持力 (582), 先端閉塞効果と支持力(583)</td>
</tr>
<tr>
<td>打込み杭の支持力評価(585), 深基礎杭の周辺抵抗力(586), 施工中の残留応力と周辺摩擦力(587), 部杭の周辺支持力(588), 補強基礎の引上げ荷重(589), 拡底杭の引抜き抵抗(590), 種々の荷重を受けるバイドライフト基礎の支持力(591,592)</td>
<td></td>
<td></td>
<td>杭の水平抵抗</td>
<td>9</td>
<td>液状化・側方流動・地盤被害</td>
</tr>
<tr>
<td>大沈下を伴う急速載荷試験(593), 急速平板載荷試験のデータ整理(595), ソイル柱・砕石の急速載荷試験(596), 木杭・鋼管杭の急速載荷試験(597), 鋼管杭の動的水平載荷試験(598)</td>
<td>5</td>
<td>FEMで用いる杭のモデル化(594), 羽根付きP B拡大固め杭の鉛直・引抜き支持力</td>
<td>耐震 (液状化・流動化を除く)</td>
<td>9</td>
<td>杭中間部の地盤改良による杭基礎の耐震補強(638, 639), 免震基礎の鉄道橋梁への適用(640), タワークレーンの安定性(641), 斜杭の振動台実験(642), 斜杭のシートバイアル耐震補強(643), 群杭への応答変位法の適用(644), 遠心実験の拡張型相似則(645), Kelvin 解による近似相互作用係数(646)</td>
</tr>
<tr>
<td>羽根付きP B拡大固め杭の鉛直・引抜き支持力(599,600), 地盤改良併用杭の組み合わせ荷重載荷(601), 小口径鋼管杭の水平載荷試験(602),</td>
<td>7</td>
<td>模型回転入杭の引抜き試験・交番載荷試験(604,605), 回転入杭の施工時残留応力(606), 回転入杭の打ち止め方(607), 二層地盤での回転入杭の支持力(608), 施工による周辺地盤への影響(609),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>木杭の圧入施工試験(610), 木杭の耐久性(611)</td>
<td>5</td>
<td>木杭の圧入施工試験(610), 木杭の耐久性(611)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>木杭の鉛直支持力(612)</td>
<td></td>
<td>木杭の鉛直支持力(612)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>施工後 44 年経過木杭の支持力(614)</td>
<td></td>
<td>施工後 44 年経過木杭の支持力(614)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 - I

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>施工管理・新工法他</td>
<td>7</td>
<td>鋼管杭基を手動試験（624）、鋼管杭メタルロード工法（625）、場所打ち杭盤施工管理（626）、仮設杭摩擦低減引抜き撤去（627）、杭先端根固め部の品質評価（628）、先端プレーン場所打ち杭工法（629）、正軸荷載下方式場所打ち杭（630）</td>
</tr>
<tr>
<td>バイルド・ラフト基礎</td>
<td>10</td>
<td>併用基礎の支持機構解析（解析条件、3D解析）（647、648）、大型模型実験によるシミュレーション解析（鉛直載荷・長期載荷、水平載荷、振動台実験）（649、650、651）、沈下特性の3D簡易変形解析（単杭・直接基礎、摩擦杭）（652、653）、鉛直支持力3D解析（654）、3D解析プログラムPRAB（655）、地盤振動杭実験（656）</td>
</tr>
<tr>
<td>杭頭接合・既設杭</td>
<td>9</td>
<td>中までコンクリート杭頭接合法（657）、RC杭頭水平載荷試験（658）、杭頭銀切り工法摩擦せん断実験（659）、薄層杭頭非接端方式（薄層密度、層厚）（660、661）、杭頭半固定場所打ち杭（662）、既設杭耐久性（663）、既設杭の新規杭支持機構（水平載荷試験、鉛直載荷試験）（664、665）</td>
</tr>
</tbody>
</table>

表・1 研究内容分類表（①編、②編、③編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>改良地盤上での基礎</td>
<td>4</td>
<td>振動締め固め改良地盤（666、667、668）、セメント改良地盤（669）</td>
</tr>
<tr>
<td>バイルドラフト基礎</td>
<td>2</td>
<td>多層地盤の沈下解析（670）、長期計測結果（671）</td>
</tr>
<tr>
<td>その他</td>
<td>4</td>
<td>回転杭の支持力係数（672）、逆T字型基礎（673）、道路橋の応答変位（674）、石レンガ積み模様の耐震性（675）</td>
</tr>
</tbody>
</table>

直接基礎 11編

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>支持力</td>
<td>6</td>
<td>斜め面での直接基礎（676、677）、平地での直接基礎（678、680、681）、寸法効果（678）</td>
</tr>
<tr>
<td>変形</td>
<td>2</td>
<td>沈下計算（682）、浮き上がり（685）</td>
</tr>
<tr>
<td>現場</td>
<td>3</td>
<td>平板載荷試験（683、684）、施工時安定（686）</td>
</tr>
</tbody>
</table>

ケーノン、鋼管矢板基礎 9編

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケーノン</td>
<td>3</td>
<td>護岸ケーノンの波状化時挙動（687、688）、既往ケーノンの水平載荷試験（689）</td>
</tr>
<tr>
<td>鋼管矢板基礎</td>
<td>4</td>
<td>鋼管矢板によるケーノン補強（690）、H-H継手開発（691、692）、支持力特性（693）</td>
</tr>
<tr>
<td>アンカー</td>
<td>2</td>
<td>拡径型アンカーの遠心荷重引き抜き実験（694）、アンカークリフトフォ試験の新型ジャッキ開発（965）</td>
</tr>
</tbody>
</table>

基礎一般、小口径杭 11編

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>高架橋基礎</td>
<td>4</td>
<td>基礎スラブによる補強効果（696、697）、近接杭の干渉効果（698）、常時微動による健全度評価（杭の支持力）</td>
</tr>
<tr>
<td>既設杭耐久性</td>
<td>7</td>
<td>既設杭の影響（700）、セットアップ（支持力増加の時間依存）（701）、軟弱地盤地域での宅地用小口径鋼管杭および木杭の鉄直支持力（702～706）</td>
</tr>
</tbody>
</table>
6. 地盤と構造物 - 抗土圧構造物

項	発表件数	内容
撃壁	6	樋付き自立式撃壁の水平土圧 (707)，補強土撃壁の構造性能 (708)，鉄筋撃壁を有する大型ブロック撃壁の設計法・耐震性・構造特性 (709, 710)，自立式鋼矢板撃壁の変形・耐震性 (711, 712)。
山留め | 16 | 山留め撃削時の既存施工の影響 (713)，二段山留め撃削時の変形・応力特性 (714, 715)，撃削底面の格子状地盤改良の評価 (716)，山留めの非線形挙動 (717)，山留め壁に作用する側圧と切効反力 (718)，根切り山留め工事における地下水排水数値解析の信頼性 (719)，大規模アンダービーングの施工と変形 (720)，歴史的建造物近接撃削工事の施工と変位 (721)，土留め壁に生じた転力の発生機構 (722)，土留め撃削解析への構成則の影響 (723)，上荷重による側圧への影響評価 (724)，山留めの三次元挙動 (725)，現場計測に基づく山留め設計法 (726)，大深度撃削工事における先行地中梁合理化検討 (727)，袋詰めモルタル覆工を用いた深基礎工法実験 (728)。

岸壁 - 護岸 | 11 | 鋼管矢板両側護岸の変形挙動・設計法 (729, 730, 731)，三次元流動解析でのケーブルのモデル化 (732)，セル式岸壁の根入れによる耐震性評価 (733)，内空矢板式岸壁の変形 (734, 735)，前面地盤改良のある矢板式岸壁の変形特性 (736)，側方流動を受ける矢板護岸の変形挙動 (737)，裏込め石の透水係数が重力式岸壁の変位に及ぼす影響 (738)，遮水材によるハツ形鋼矢板維手の遮水性 (739)。

7. 地盤と構造物 - 地中構造物

トンネル・シールドトンネル・埋設管設施

項	発表件数	内容
掘削時挙動	4	切羽近傍地盤の変位 (740)，線路下横断工事における軌道変状 (741)，リングカット工法の効果 (742)，サイドバイサイドブレインジングの効果と設計 (743)。
長期挙動・維持管理	2	トンネルの変状発生要因 (744)，変状トンネル対策工の効果 (746)。
耐震性	1	断層変位によるトンネル損傷の緩和対策 (747)。
二次元円形トンネル掘削時挙動 (749, 750, 751)，セグメントの作用土圧 (752, 753)，浮力作用時のセグメントの断面力 (755)，近接施工の現場計測 (756)，シールド場所打ちライニングの数値解析 (757)。		
作用土圧変形挙動	8	埋設構造物の作用土圧 (759)，斜め掘り溝型埋設管 (760, 761, 762, 763)，たわみ性管の操返し載荷 (764)，泥炭地盤の埋設管整天埋設 (765)，大口径管 (772)。
老朽化維持管理	4	電気通信ネットワーク地下トンネルの維持管理 (745)，管水路の経年に伴う劣化 (766)，老朽管の更生工法 (770)，管破損部周辺地盤の空洞形成 (771)。

表 - ト 研究分野の分類（32編）
地盤と構造物 - 複合構造物

補強士 鹿島建設㈱ 北本 幸義

1. はじめに

表 - 1 研究内容の分類（29編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>面材による
盛土補強</td>
<td>7</td>
<td>面内方向透水性能（793）、高盛土補強士壁（802〜804）、二重壁構造（805〜807）</td>
</tr>
<tr>
<td>棒・帯材による
盛土（基盤）補強</td>
<td>6</td>
<td>多数アンカー（779、785、786）、テールアルメ（787、788）、格子状補強材（800）</td>
</tr>
<tr>
<td>棒材による
地山（既設盛土）補強</td>
<td>4</td>
<td>先端拡大補強棒（783、784）、石積み擁壁変状対策（799）、除去式地山補強士（801）</td>
</tr>
<tr>
<td>表層拘束による
地山補強</td>
<td>5</td>
<td>長繊維混入補強士（780、781）、ジオセル補強土壁（794）、舗装基礎抑制（796）、盛土みなぎ防強化対策（798）</td>
</tr>
<tr>
<td>構造物の
構築・補強</td>
<td>7</td>
<td>ジオグリッド補強防波堤（782、797）、ジオテキスタイル補強土橋梁（789〜791）、防護柵支柱（792）、地盤・各種材料間摩擦特性（795）</td>
</tr>
</tbody>
</table>

中日本建設コンサルタンクトル 栗本 和明

地盤と構造物 - 動的問題

(2) 地中構造物トンネル、地中構造物、液状化、浮上り

表 研究分野の分類（16編）

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>振動台実験</td>
<td>2</td>
<td>ポリマー発散材による地震時土圧低減（808）、軽量洪水吐きの地震時変形応答と耐震性（818）</td>
</tr>
<tr>
<td>地震時応答解析</td>
<td>5</td>
<td>ランプトンネルの二次元地震時応答解析と三次元地震時応答解析（810）、ランプトンネルの三次元地震時応答解析による評価（811、812、813）、緩みを考慮した地盤の二次元地震時挙動（814）</td>
</tr>
<tr>
<td>浮上り対策</td>
<td>4</td>
<td>避水壁による側方変位抑制（815）、マンホール浮上り対策（817、819）、地下水位低下工法による過圧密履歴（820）</td>
</tr>
<tr>
<td>浮上り量予測</td>
<td>3</td>
<td>浮上り解析における地盤の変位量の評価（821、822、823）</td>
</tr>
<tr>
<td>リサイクル材料</td>
<td>1</td>
<td>リサイクル材料（818）</td>
</tr>
<tr>
<td>沈下予測</td>
<td>1</td>
<td>沈下量の予測（824）</td>
</tr>
</tbody>
</table>
表 - 1 研究分野の分類 (22 項目)

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>室内試験</td>
<td>4</td>
<td>岩盤斜面の崩壊形態（911），現象エネルギーを用いた安定度評価（912，913），鉄筋挿入工法の補強効果（914，915，916）</td>
</tr>
<tr>
<td>模型実験</td>
<td>6</td>
<td>岩盤斜面の崩壊形態（911），現象エネルギーを用いた安定度評価（912，913），鉄筋挿入工法の補強効果（914，915，916）</td>
</tr>
<tr>
<td>数値解析</td>
<td>5</td>
<td>盛土崩壊の予測（918），すべり・崩壊の挙動（919，920），石積壁の変形解析（924，925）</td>
</tr>
<tr>
<td>危険度評価</td>
<td>7</td>
<td>崩壊範囲の評価（917），被災要因分析（921），斜面の応答加速度分布（922），DEM を用いた安定性評価（923），常時微動（926，927），水平震度の推定（928）</td>
</tr>
</tbody>
</table>

(その他) 研究内容の分類

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>地盤の振動性状</td>
<td>5</td>
<td>常時微動による埋め立て地盤（891,892），台地（898），盛土（896）の振動特性，地盤振動と地盤種別（893），</td>
</tr>
<tr>
<td>地盤の動特性</td>
<td>4</td>
<td>地盤の卓越周期とレーリー波速度（895），海外協力・イランラブリーズ市の弾性波探査（894），プレストレストによる S 波速度（902），2003 年十勝沖地震の本震，余震による地盤特性の変化（904）</td>
</tr>
<tr>
<td>地震被害と地盤構造</td>
<td>3</td>
<td>過去の被害地震の調査結果（897），2004 年新潟県中越地震による川口町（905），小千谷市（906）</td>
</tr>
<tr>
<td>地盤の地震応答</td>
<td>4</td>
<td>多重反射と表層地盤の非線形（899），KIK-net のデータに基づく地震動の增幅特性（900），因果的履歴減衰モデル（901），2000 年鳥取県西部地震における津波（903）</td>
</tr>
</tbody>
</table>
地盤防災 - 豪雨
斜面安定

[独]労働安全衛生総合研究所 伊藤 和也

中部大学 杉井 俊夫

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>地すべり強度</td>
<td>6</td>
<td>残留強度に及ばすせん断速度効果（959）、第四紀大阪層部地すべりの物理特性（961）、すべり面強度（960）、不能和土の残留強度（962）、ネパールの雲母類含鉱物と地すべり強度の相関（963）、三沢ダム流域の高速地すべり（964）、</td>
</tr>
<tr>
<td>斜面の安定解析</td>
<td>5</td>
<td>弾塑性 FEM（968）、周縁部強度を考慮した三次元安定解析（969）、極限平衡法による三次元安定解析（970、971）、岩盤すべりの事例解析（972）</td>
</tr>
<tr>
<td>対策工の事例報告</td>
<td>5</td>
<td>メコン川流域の軟弱粘性土斜面の安定性（965）、台風による斜面崩壊の対策事例（967）、グランドアンカーの初期定着力（973）、法面保護工の維持補修（974）、岩盤地すべり対策事例（975）</td>
</tr>
<tr>
<td>GIS・データベース</td>
<td>2</td>
<td>地盤の液状化履歴（984）、先行降雨と地震（993）</td>
</tr>
<tr>
<td>現場調査</td>
<td>4</td>
<td>護岸の崩壊原因（976）、噴火後の現状（977）、簡易斜面防災対策（978）、間隙水圧観測（983）</td>
</tr>
<tr>
<td>調査法・技術開発</td>
<td>4</td>
<td>地盤のゆるみ評価（979、980）、簡易的貫入試験のロッド長さの影響（985）、土層強度検査棒の有効性（991）</td>
</tr>
<tr>
<td>模型実験・数値解析</td>
<td>8</td>
<td>逆解析による地下水位推定（981）、まさ土斜面の安定性（982）、表層飽和度と地下水位の関係（986）、排水不良の鉄道盛土への影響（987）、数量化理論による崩壊形状（988）、谷埋め盛土の地下水位タンクモデル（989）、遠心場降雨実験（992）、主成分分析法による維持管理（990）</td>
</tr>
</tbody>
</table>

(例) 表 研究分野の分類（17編）
地盤環境

(１) 調査・評価・処理技術

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査・評価技術</td>
<td>10</td>
<td>品質管理（1026, 1027, 1035）, 微生物圧裂時のモニタリング（1028, 1029）, バイオアッセイ（1030）, 迅速分析・簡易分析（1031〜1034）</td>
</tr>
</tbody>
</table>

地盤環境

(３) 流動変形・崩落

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>斜面崩壊・流動解析</td>
<td>4</td>
<td>SPH の適用性, DEM による土石流解析, DEM による実崩壊斜面崩壊解析</td>
</tr>
<tr>
<td>泥流・土石流</td>
<td>3</td>
<td>マヨン火山の泥流被害, 土石流の模擬エネルギー, 土石流の到達距離</td>
</tr>
<tr>
<td>東京電力の性質評価</td>
<td>2</td>
<td>実大規模実験, 非線形解析</td>
</tr>
<tr>
<td>地盤崩壊のケーススタディー</td>
<td>5</td>
<td>岩盤崩壊箇所, 雪崩被害, 老朽化トンネルの修復, 路線下陥箇所の地盤構成・物性, 線路下陥箇所の推定</td>
</tr>
</tbody>
</table>

松原大学 小田 匠寛

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>有機化合物処理技術</td>
<td>8</td>
<td>ダイオキシンの無害化（1056）, ダイオキシンの固定化（1057）, ダイオキシンの分離（1058, 1059）, 油分の浄化（1060, 1061）, VOC の浄化（1062）, PCB の抽出・無害化（1063）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査・評価技術</td>
<td>10</td>
<td>品質管理（1026, 1027, 1035）, 微生物圧裂時のモニタリング（1028, 1029）, バイオアッセイ（1030）, 迅速分析・簡易分析（1031〜1034）</td>
</tr>
</tbody>
</table>

大成建設 植口 雄一
地盤環境

(2) 処分場と遮水技術

<table>
<thead>
<tr>
<th>表1 研究分野の分類（27編）</th>
</tr>
</thead>
<tbody>
<tr>
<td>大項目</td>
</tr>
<tr>
<td>遮水壁（4編）</td>
</tr>
<tr>
<td>処分場遮水工（9編）</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*印は現在の計測や施工を含むもの

その他の環境評価

<table>
<thead>
<tr>
<th>項目</th>
<th>発表件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>濁水・堆積物改良・評価</td>
<td>8</td>
<td>濁水・脱水処理技術（1073, 1074）、環境改善のための材料開発（1075, 1079, 1080）、流域環境改善のための調査・実験（1076, 1077, 1078）</td>
</tr>
<tr>
<td>沿岸環境</td>
<td>8</td>
<td>底質（浅場－深場）の環境負荷（1081, 1082）、干渉（浅場）の創出工法（1083）、底質（湖沼）の環境負荷（1084）、干渉（浅場）の環境評価（1085, 1086）、底質（深場）の有効利用（1087）、沿岸の環境保全（1088）</td>
</tr>
<tr>
<td>自然環境・地盤振動調査・評価</td>
<td>9</td>
<td>遺跡保存におけるキャッピング技術・調査（1107, 1108）、地球温暖化対策における木杭の有効利用調査（1109, 1110, 1111）、火山災害に伴う災害廃棄物の調査（1112）、ヒートアイランド対策における保水性舗装材の開発（1113）、震動伝播・遮断における模型・原位置実験（1114, 1115）</td>
</tr>
</tbody>
</table>