平成 29 年度 地盤材料試験の技能試験 報告書

土粒子の密度試験 (JIS A 1202:2009) 土の含水比試験 (JIS A 1203:2009) 土の粒度試験 (JIS A 1204:2009) 土の液性限界・塑性限界試験 (JIS A 1205:2009)

平成 30 年 1 月

公益社団法人地盤工学会 基準部 技能試験実施委員会

平成 29 年度 地盤材料試験の技能試験 報告書

目 次

はし	:wに	- 1
1	技能試験の概要	- 2
2	参加機関	- 3
3	試料士	- 4
4	試験結果の精度の検討方法	- 9
5	試験結果の評価	12
6	アンケートの結果	46
おれ	つりに	90
謝話	 辛	91

はじめに

地盤材料試験の結果は、各種構造物の設計・施工・維持管理に影響するとともに、大学・高専をはじめ多くの研究機関で行われている研究成果にも直接的に関係しており、その正確性が求められることは衆目の一致するところであろう。しかし、地盤材料試験結果の精度・ばらつきについては、土や地盤が本来持っている不均質性の所為としてある程度は仕方ないものとされて扱われることが多く、その精度確認はあまり行われてこなかった。

公益社団法人地盤工学会では、これまでに6回の「技能試験」を実施し、地盤材料試験の精度 確認を行ってきた。平成23年度は、調査・研究部に設置された「地盤材料試験結果の精度の分析 と表記方法についての研究委員会」(平成 21~23 年度,委員長:澤孝平)の技能試験 WG が日本 適合性認定協会(JAB)と共催で技能試験(粘性土の物理的性質試験:含水比・土粒子の密度・ 粒度・液性限界・塑性限界)を実施し、45機関が参加した。また、平成24年度には、前述の研 究委員会の成果を受け,公益性の使命を全うする立場から,地盤材料試験に関する技能試験を実 施できるかどうかを検討するために、調査・研究部に設置された「技能試験準備委員会」(平成 24 年度,委員長:澤孝平)が技能試験(改良土の湿潤密度試験と一軸圧縮試験)を実施し,参加 した 51 機関の試験結果を評価した。さらに、平成 25 年度からは、「技能試験」の継続的実施に向 けて、基準部に新たに設置された「技能試験実施委員会」(平成 25 年度~,委員長:日置和昭) が「技能試験」の実質運営を行っている。平成25年度には砂の物理的性質試験(土粒子の密度・ 粒度・最大密度・最小密度)、平成26年度には粘性土の物理的性質試験(含水比・土粒子の密度・ 粒度・液性限界・塑性限界),平成 27 年度には改良土の湿潤密度試験と一軸圧縮試験,平成 28 年 度には砂質土の物理的性質試験(土粒子の密度・粒度)と突固めによる土の締固め試験を実施し, 平成 25 年度:55 機関,平成 26 年度:66 機関,平成 27 年度:55 機関,平成 28 年度:51 機関の 試験結果を評価した。

試験機関が「技能試験」に参加する意義としては、自己の試験結果が全体のどの位置にあるかを確認できること、必要に応じて試験技術や試験環境の改善を図れること、的確な試験結果が出せる状態を維持できること、などが挙げられよう。一方、地盤工学会が「技能試験」を継続実施する意義としては、試験機関の質的向上と地盤材料試験結果の信頼性向上に寄与すること、関連する JIS や JGS 等の学会制定基準類の改正に反映できることなどが挙げられ、社会貢献の役割を果たせるものと考えられる。

今年度は、粘性土の物理的性質試験(含水比・土粒子の密度・粒度・液性限界・塑性限界)を 実施し、61機関の試験結果を評価するとともに、同時に実施したアンケート結果を報告書として まとめた。今年度は、平成26年度と同じ試験を実施したが、各試験ともに3年前(平成26年度) と比較し試験結果の変動係数は小さくなる傾向を示しており(この傾向は、特に粒度試験で著し く表れている)、またアンケート結果からは試験器具の購入時検査・使用前点検・校正の実施率が 3年前と比較し向上している様子が伺える。詳細については、5月もしくは6月に予定している技 能試験の報告会にて報告するが、これらのことは、「技能試験」の継続実施による一つの成果の表 れとして捉えている。

本報告書が各機関の試験結果の精度向上に役立ち、一人でも多くの方が試験結果の品質について関心を持って頂ければ幸いである。

1 技能試験の概要

(1) 実施機関

主催機関:公益社団法人 地盤工学会 基準部 技能試験実施委員会 (以降,当委員会と称する)

(2) 実施試験

土粒子の密度試験 (JISA 1202:2009)

土の含水比試験 (JIS A 1203:2009)

土の粒度試験(JIS A 1204:2009)

土の液性限界・塑性限界試験 (JISA 1205:2009)

(3) 実施期間

試験実施期間:平成29年7月10日~7月28日

試験結果報告期限:平成29年7月28日

(4) 試料

市販の粘性土2種類を用いる。

試料の準備は2.00mm フルイ通過試料を所定の含水比に調整したものを,配付試料とする。 参加機関には1試料あたり約1kgを送付する。

(5) 試料と試験結果の取り扱い

- 1) 試験試料は当委員会より配付する。
- 2) 試験結果の保管は地盤工学会事務局で行い、試験結果の整理は当委員会が行う。整理にあたり、参加機関に無作為に番号付けをし、その整理番号により整理を行い試験結果の公平性を図る。
- 3) 試料の均質性確認試験および技能試験結果の評価は、ISO/IEC 17043 (JIS Q 17043) の 指針に準じ、当委員会が妥当と考えた方法による。
- 4) 試験結果の取りまとめと整理が終了した後,当委員会から各参加機関に報告書を送付する。また,当委員会は,参加機関各々にだけ,対応する整理番号を連絡する。
- 5) 当委員会は、実施した試験結果・報告書、試験と共に実施したアンケート結果を当委員会の研究成果として本技能試験報告会、および各種学会に投稿する予定である。但し、 参加機関名は掲載しないことを原則とする。

(6) 問い合わせ先、試験結果の送付先

公益社団法人 地盤工学会事務局 技能試験担当

TEL: 03-3946-8673 FAX: 03-3946-8678

E-mail: ginoushiken@jiban.or.jp

2 参加機関

今回の技能試験に参加した機関は,61機関である。

申込み:61機関

土粒子の密度試験:60機関

粒度試験:59機関

液性・塑性限界試験:59機関

3 試料土

3.1 試料土の性質

試料土には2種類の粘性土(A 試料と K 試料という)を用いた。後述の均質性試験(各 10 個の試料)の粒径加積曲線を図3.1 に、基本的性質(10 個の試料の平均値)を表3.1 に示す。

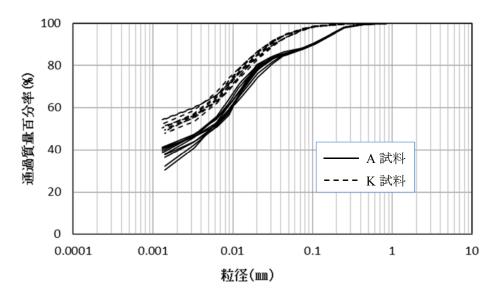


図3.1 粒径加積曲線(均質性試験の10試料)

ſ	試料名	土粒子の密度	含水比	砂分	シルト分	粘土分	液性限界	塑性限界	分類名
	PV171 /II	(g/cm^3)	(%)	(%)	(%)	(%)	(%)	(%)	刀規和
ſ	A試料	2.703	37.4	11.8	38.2	50.0	43.1	21.5	(CL)
ſ	K試料	2.643	49.8	2.8	32.3	61.6	57.8	19.8	(CH)

表 3.1 基本的性質(均質性試験の 10 試料の平均値)

3.2 試料土の準備

3.2.1 試料土の均質化

配付する試料土の均質性を高めるため、以下の処理を行った。

- a) 風乾状態の試料土の最大粒径を 2.00 mm になるように粒径を調整した。
- b) ポット型ミキサーで空練りし、ミキサー内よりランダムに採取し、10 ロットに分取した。
- c) 各ロットを所定の含水比に調整したのち、 $2\sim3$ 日放置した。この 10 ロットをそれぞれ 2 等分し、異なるロットと混ぜ、再度ミキサーで練り、新たな 10 ロットを作製した。
- d) 作製した10ロットを技能試験用試料及び均質性試験用試料とした。

3.2.2 配付試料の分別と試料土の識別

均質化した試料土1 ロット(約10 kg)を8分別し、ビニル袋(1 袋当たり約1 kg)に収納し、参加機関に1 袋ずつ配付した。なお、A 試料とK 試料の2 種類の試料土の取り違えを防止するために、試料土ごとにビニル袋の色を変え、2 色で識別した。

3.3 配付試料の均質性の検討

3.3.1 均質性試験

準備した試料土の均質性を確認するために、A 試料・K 試料ごとにビニル袋 10 個ずつの試料土について、技能試験と同様に土粒子の密度試験、土の含水比試験、土の粒度試験、土の液性限界・塑性限界試験を実施し、土粒子の密度 ρ_s 、含水比 w、50%粒径 D_{50} 、細粒分含有率 F_c 、粘土分含有率 C_c 、液性限界 w_l 、塑性限界 w_p を求めた。

3.3.2 均質性の検討

(1) 配付試料の均質性の判定基準^{1), 2)}

技能試験において配付される試料の均質性評価基準は、JIS Z 8405 附属書Bにおいて次の様に 決められている。

『B.2 均質性試験の評価基準

試料間標準偏差 s_s と技能評価のための標準偏差 $\hat{\sigma}$ と比較する。次の場合にはこの試料が十分均質であるとみなす。

この式の係数0.3の根拠は、この基準が満たされる場合、試料間標準偏差によって生じる技能試験の標準偏差が約10%を越えないということである。(以下省略)』

この基準における「標準偏差」は試験結果のばらつきを表すものであり,技能試験や均質性試験の標準偏差には,多くの要因がある。これらの要因は試験機関に関係するものと試料に関係するものに大別できる。この内,試験機関に関係するものは試験者・試験機器・試験室環境・繰返し試験の影響であり,試料に関係するものは試料間ばらつき(配付試料のばらつき)と試料内ばらつき(配付試料から試験所が採取するサンプルのばらつき)に分けることができる。これらのばらつき(標準偏差)は,複数個のサンプルによる繰返し試験結果の分散分析から得られる技能試験の主要因 $\sigma_{P(A)}$ ・誤差項 $\sigma_{P(e)}$ 及び均質性試験の主要因 $\sigma_{H(A)}$ ・誤差項 $\sigma_{H(e)}$ から,次のように求めることができる(図3.2参照)。

- ① 試験機関の試験者・機器・環境の違いによる標準偏差: σ_{OeL} = $\sqrt{{\sigma_{\mathrm{P(A)}}}^2 {\sigma_{\mathrm{H(A)}}}^2}$
- ② 試験機関による試験の繰返しによる標準偏差: $\sigma_{\rm ReL} = \sqrt{\sigma_{\rm P(e)}^2 \sigma_{\rm H(e)}^2}$
- ③ 試料間ばらつきによる標準偏差: $\sigma_{AmS} = \sigma_{H(A)}$
- ④ 試料内ばらつきによる標準偏差: $\sigma_{InS} = \sigma_{H(e)}$

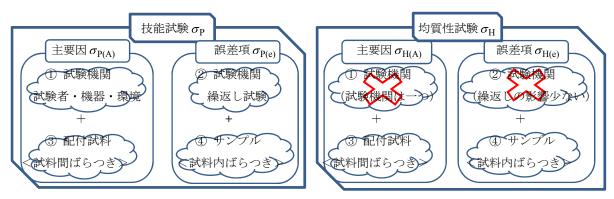


図3.2 技能試験結果と均質性試験結果のばらつきの要因

試料内ばらつき④は試験機関によるサンプルの採取作業の影響が大きく関与していると考え, JIS Z 8405 附属書Bの均質性評価基準では、試料間標準偏差s。は「試料間ばらつき③」だけとし、 技能評価のための標準偏差 $\hat{\sigma}$ は「試験機関が関係するばらつき(①+②+④)」としている。

これらの要因ごとの標準偏差を求めるためには、前述のように複数個のサンプルによる繰返し試験を実施して、その結果を分散分析する必要がある。ところが、地盤材料試験では繰返し試験を実施しないものもあり(ex.粒度試験・液性限界試験・締固め試験など)、要因ごとのばらつきは求められない。従って、地盤材料試験の技能試験では、JISの均質性評価基準における試料間標準偏差s。と技能評価のための標準偏差 \hat{s} を次の様に考える。これを「地盤工学会の方法」という。

試料間標準偏差 s_s :均質性試験の標準偏差 σ_H (③+④)

技能評価のための標準偏差 $\hat{\sigma}$:技能試験の標準偏差 σ_{p} (①+②+③+④)

2011年から2016年に地盤工学会が実施した地盤材料試験の技能試験結果の内,繰返し試験を行

っている試験結果について、分散分析を行って要因ごとの標準偏差を求め、「JISの方法」と「地盤工学会の方法」の $s_s/\hat{\sigma}$ の違いを比較すると、図3.3の様である。これによると、粘土と珪砂・砂質土はすべての試験項目において、両者の違いは極めて小さい。改良土では約25%の試験結果で両者が同一とは言えない状況であるが、残りの約75%は両者の違いは小さい。両者が同一でない場合でも地盤工学会の方法の $s_s/\hat{\sigma}$ はJISの方法より大きく、JISの方法で均質でないものを均質であると誤るリスクはほとんど生じていない。従って、地盤工学会の方法により配付試料の均質性を判定できると考える。

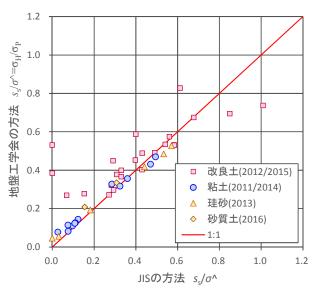


図 3.3 JIS の方法と地盤工学会の方法との違い²⁾

(2) 要因の寄与率からの検討と評価基準の見直し1),3)

(1) で述べた地盤工学会の均質性評価方法における配付試料の要因 (③+④) の記号を (Smp), 試験機関の要因 (①+②) の記号を (Lab) とする。従って,配付試料の標準偏差は σ_{Smp} ,試験機関の標準偏差は σ_{Lab} である。不確かさ評価では要因ごとの標準偏差を合成したものを合成標準偏差 (σ_{c}) と言うので, σ_{c} の要因は (①+②+③+④) であり, $\sigma_{c} = \sigma_{P}$ (技能試験の標準偏差)である。そして,合成標準偏差 (σ_{c}) の中の要因 (x) の標準偏差 (σ_{x}) の割合を寄与率 (r_{x}) と定義している。従って, r_{c} 2 = r_{Lab} 2 + r_{Smp} 2 であり,各要因の寄与率は次のようである。

試験機関の寄与率:
$$R_{\text{Lab}} = \frac{\sigma_{\text{Lab}}^2}{\sigma_{\text{c}}^2} \times 100$$

配付試料の寄与率:
$$R_{\text{Smp}} = \frac{\sigma_{\text{Smp}}^2}{\sigma_{\text{c}}^2} \times 100$$

配付試料の標準偏差 $\sigma_{\rm Smp}$ は均質性試験の標準偏差 $\sigma_{\rm H}=s_{\rm s}$ であるので、JIS 基準の比 $(s_{\rm s}/\hat{\sigma}=\sigma_{\rm H}/\sigma_{\rm P})$ と試験機関の寄与率 $(R_{\rm Lab})$ は次の関係となる。

$$(\frac{s_{\rm s}}{\hat{\sigma}})^2 = (\frac{\sigma_{\rm H}}{\sigma_{\rm p}})^2 = \frac{\sigma_{\rm Smp}^2}{\sigma_{\rm c}^2} = \frac{\sigma_{\rm c}^2 - \sigma_{\rm Lab}^2}{\sigma_{\rm c}^2} = 1 - \frac{\sigma_{\rm Lab}^2}{\sigma_{\rm c}^2} = 1 - \frac{R_{\rm Lab}}{100}$$
 (1)

この式(1)によると、 $s_s/\hat{\sigma}=0.3$ では $R_{\text{Lab}}=91$ (%) であり、JIS 基準($s_s/\hat{\sigma}\leq0.3$)が満たされる場合、試験機関の寄与率(R_{Lab})が 91 %以上、配付試料の寄与率(R_{Smp})が 9 %未満である。つまり、

配付試料の影響(JIS では「試料間標準偏差によって生じる技能試験の標準偏差」と表現している) は 10 %以下である。

2011 年~2016 年の技能試験結果をプロットすると、図 3.4 のようにこの関係式に一致する。JIS 基準($s_{\rm s}/\hat{\sigma} \le 0.3$)を満足するのは、粘土:77 %、珪砂:70 %、砂質土:43 %、改良土:13 %であり、改良土が極めて悪い。全体では約 50 %しか JIS 基準を満足しない。そこで、均質性が確保しにくい地盤材料試験の場合,JIS 基準の比を 0.5 まで緩和することにする。式(1)によると、 $s_{\rm s}/\hat{\sigma} \le 0.5$ では試験機関の寄与率 $R_{\rm Lab} \ge 75$ %(配付試料の寄与率 $R_{\rm Smp} < 25$ %)であり、試験機関の技能程度を最低限は表示していると考える。

図 3.4 によると、 $s_8/\hat{\sigma} \le 0.5$ を満足する割合は、粘土: 100 %、珪砂: 80 %、砂質土: 79 %、改良土: 62.5 %となり、全体では 81 %が均質性を確保できることになる。しかしながら、参加機関が技能試験結果を利用して、試験方法などの改善に取り組む際には、その技能試験結果に配付試料の影響がある程度含まれていることに留意すべきである。

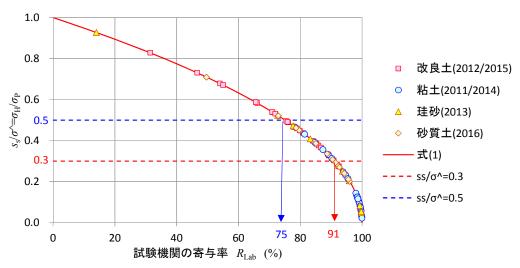


図 3.4 JIS 基準の比と試験機関の寄与率の関係 3)

(3) 均質性試験結果と技能試験結果の平均値・標準偏差・変動係数

A試料とK試料について実施した均質性試験結果(各10試料)とその平均値,標準偏差及び変動係数は表3.2の様である。この表には技能試験結果(61機関)の平均値,標準偏差,変動係数及び均質性判定の指標である $s_s/\hat{\sigma}$,及び図 3.4で説明した試験機関の寄与率 R_{Lab} (%)も表示している。

表3. 2によると、A試料では全試験項目において配付試料の均質性判定の指標 $s_s/\hat{\sigma}$ は0.5以下であり、均質性を満足している。K試料では50%粒径と液性限界以外の試験項目は配付試料の均質性を満足しているが、50%粒径と液性限界においては問題がある。とくに、均質性試験の10試料中、沈降分析の測定時間内のデータから50%粒径が読み取れず、粒径加積曲線を延長して外挿法により50%粒径を求めているものが4試料あり、50%粒径のばらつきが大きくなっている。配付試料の均質性判定の指標である $s_s/\hat{\sigma}$ が0.5以上、すなわち、試験機関の寄与率 R_{Lab} が75 %以下となる試験項目については、今回の技能試験結果を利用して試験機器・試験室環境・試験方法・試験員の技量などのチェックや改善に取り組む際に、配付試料のばらつきが技能試験結果に25 %以上影響していることに留意すべきである。

表 3.2 均質性試験結果と技能試験結果及び配付試料の均質性判定結果

【A試料】

[TIMP]		A 1 11	I date of an absolute	E00/July 57	/m/st /	W. L. A. A. + +	24-14-70 D	
区分	試料名	含水比 w (%)	土粒子の密度	50%粒径	細粒分含有率 F _c (%)	粘土分含有率 $C_c(\%)$	液性限界	塑性限界
			$\rho_{\rm s}$ (g/cm ³)	D_{50} (mm)		- ' '	w _L (%)	w _p (%)
	A-1	37.5	2.699	0.0044	88.0	51.5	43.8	22.1
	A-2	37.3	2.707	0.0043	88.0	51.9	43.5	21.8
	A-3	37.5	2.702	0.0054	87.9	48.4	42.5	22.3
	A-4	36.5	2.701	0.0043	88.2	51.5	42.8	22.5
	A-5	37.2	2.700	0.0052	88.1	49.7	43.7	22.1
	A-6	37.6	2.708	0.0058	88.3	47.9	43.7	20.3
均質性試験	A-7	37.7	2.699	0.0057	88.4	48.5	44.0	20.6
	A-8	37.5	2.701	0.0049	88.5	50.2	42.3	20.6
	A-9	37.8	2.708	0.0055	88.3	48.8	42.5	20.7
	A-10	37.6	2.709	0.0044	88.5	51.7	41.7	21.6
	平均値	37.4	2.703	0.0050	88.2	50.0	43.1	21.5
	標準偏差 s s	0.37	0.0041	0.00060	0.21	1.56	0.79	0.83
	変動係数(%)	0.98	0.15	12.11	0.24	3.11	1.83	3.85
	平均値	37.5	2.704	0.0057	88.7	48.6	45.5	23.3
技能試験	標準偏差 σ^	0.79	0.0333	0.00227	1.44	6.02	2.03	2.58
	変動係数(%)	2.11	1.23	39.68	1.62	12.40	4.47	11.11
	s_s/σ^{\wedge}	0.47	0.12	0.27	0.15	0.26	0.39	0.32
均質性判定	R _{Lab} (%)	78.3	98.5	92.9	97.8	93.3	85.0	89.8

【K試料】

[TAMAT]		A 1 11	1 data → on other other	500/Jkl-57	/m/st / ^ + =	W. I. A. A. + +	24-14-170 B	
区分	試料名	含水比 w (%)	土粒子の密度 ρ_s (g/cm³)	50%粒径 D ₅₀ (mm)	m 粒分含有率 $F_c(\%)$	粘土分含有率 $C_c(\%)$	液性限界 w _L (%)	塑性限界 w _p (%)
	K-1	49.7	2.652	0.0011	97.2	62.2	60.2	21.9
	K-2	49.7	2.645	0.0012	97.4	61.4	59.2	21.1
	K-3	50	2.65	*0.00037	97.2	63.9	56.7	18.9
	K-4	50.5	2.641	*0.00037	97.3	63.8	56.8	22.4
	K-5	49.2	2.645	*0.00063	97.4	64.2	56.6	20.5
	K-6	50.2	2.641	*0.00093	96.7	60.4	58.7	17.9
均質性試験	K-7	49.9	2.642	0.0014	97.2	60.9	58.7	19.3
	K-8	49.6	2.641	0.0016	96.9	60.0	58.1	16.9
	K-9	49.6	2.633	0.0017	97.1	60.9	56.3	19.3
	K-10	49.7	2.644	0.0021	97.7	58.5	56.5	19.5
	平均値	49.8	2.643	0.0011	97.2	61.6	57.8	19.8
	標準偏差s。	0.36	0.0053	0.000578	0.28	1.88	1.38	1.72
	変動係数(%)	0.72	0.20	50.73	0.28	3.05	2.38	8.72
	平均値	49.7	2.658	0.0027	96.9	63.6	59.8	22.8
技能試験	標準偏差 σ^	1.21	0.0455	0.00073	2.07	5.33	2.62	4.10
	変動係数(%)	2.43	1.71	26.77	2.13	8.38	4.39	18.03
护所州和宁	s_s/σ^{\wedge}	0.30	0.12	0.79	0.13	0.35	0.52	0.42
均質性判定	R _{Lab} (%)	91.1	98.7	37.4	98.2	87.5	72.5	82.3

⁽注)*:沈降分析において、24時間までのデータでは50%粒径を求められなかったので、外挿法により求めている。

参考文献

- 1) 澤孝平,中山義久:地盤材料技能試験における配付試料の均質性と試験結果の評価方法に関する研究,不確か さ評価事例集Ⅲ,産業技術総合研究所,計量標準総合センター,NMIJ 不確かさクラブ,pp.57-80,2017.
- 2) 澤孝平,中山義久,服部健太:技能試験結果の不確かさによる配付試料の均質性に関する検討(その3),第52 回地盤工学研究発表会論文集,地盤工学会,No.44,pp.87-88,2017.
- 3) 澤孝平・中山義久・服部健太:地盤材料試験結果の精度・ばらつきの実態とその対処・対応についての所見, Kansai Geo-Symposium 2017 - 地下水地盤環境・防災・計測技術に関するシンポジウムー論文集, No.9-6, 地盤 工学会関西支部・地下水地盤環境に関する研究協議会, pp.306-311, 2017.

4 試験結果の精度の検討方法

4.1 精度の比較指標と基準

技能試験の試験結果の精度を比較するために用いられる指標は「z スコア」である。これは、ISO/IEC 17025 に基づく試験所認定制度における技能試験の際に用いられているもので、試験所間の試験結果を容易に比較できるものである。ある機関iの試験結果を x_i 、全機関の試験結果の平均値を \bar{x} 、標準偏差を σ とすると、ある機関iのzスコア z_i は次の式で求められる。

$$z_i = \frac{x_i - \bar{x}}{\sigma} \tag{4.1}$$

すなわち, z スコアは「試験結果の偏差(平均値との差)が標準偏差の何倍であるか」を表すものであり, z スコアが小さいと精度が良い(試験結果が平均値に近い)ことになる。技能試験では次の基準で精度レベルを評価している。

$$\begin{vmatrix} z_i \end{vmatrix} \le 2$$
 :満足 $2 < |z_i| < 3$:疑わしい $3 \le |z_i|$:不満足
$$(4.2)$$

試験結果の極端な値による影響を最小化するために、「四分位法により正規四分位範囲として求めたzスコア」が用いられることが多く、今回の評価でもこの方法(次式)によりzスコアを算定する。ここでは、この方法を「四分位法によるzスコア」という。

$$z_i = \frac{(x_i - Q_2)}{(Q_3 - Q_1) \times 0.7413} \tag{4.3}$$

ここに、 Q_1 : 試験結果を最小値から最大値への昇順に並べ、小さいほうから $\{(n-1)/4+1\}$ 番目の試験結果、 Q_2 : 小さいほうから $\{(n-1)/2+1\}$ 番目の試験結果、 Q_3 : 小さいほうから $\{3(n-1)/4+1\}$

式(4.1)と式(4.3)を比較すると,四分位法による z スコアでは,中央値の Q_2 が平均値に相当し, $\{(Q_3-Q_1)\times 0.7413\}$ が標準偏差に相当することが分かる。

4.2 zスコア算出と技能試験評価のポイント

4.2.1 配付試料の均質性の考慮

配付試料の均質性に問題がある場合の対処方法として、3.3.2(1)で説明した「JIS Z 8405 附属書B」の続きには次のように記述している。

『この基準が満たされない場合、コーディネータは次の可能性を考慮する必要がある。

- a) 試料作成手順を検査し、改善の可能性を調べる。
- b) 多数の試料を技能試験スキーム中の各参加者に配布し、各試料について測定結果を取得するように要求する。試料の不均質性によって、試料内標準偏差が次式のように増加する。

$$\sigma_{r1} = \sqrt{\sigma_r^2 + s_s^2} \qquad (B.2)$$

 σ_{rl} を測定の繰返し回数の選択のためのガイドライン,式(2)中の σ_{r} の代わりに使用する。c) 次の式によって $\hat{\sigma}$ を計算して,試料間標準偏差を技能試験のための標準偏差に使用する。

$$\hat{\sigma} = \sqrt{\hat{\sigma}_1^2 + s_s^2} \tag{B.3}$$

ここに、 $\hat{\sigma}_l$: 試料の不均質性に許容度を含まない技能試験の標準偏差である。』 昨年までの地盤材料の技能試験では、均質性試験結果に基づき配付試料の均質性を検証すると、 JISの基準($s_s \le 0.3\hat{\sigma}$)を満足しないことがあったため、上記の式(B.3)により $\hat{\sigma}$ を算出しいてた。すなわち、この計算過程において、式(B.3)の「試料の不均質性に許容度を含まない技能試験の標準偏差 $\hat{\sigma}_I$ 」として「技能試験結果の標準偏差 σ_P (実際は四分位数法による標準偏差 $(Q_3-Q_1)\times 0.7413$)」を用いている。ところが、図 3.2において説明しているように、技能試験結果の標準偏差 σ_P の中には試料間ばらつきと試料内ばらつきに基づく標準偏差 $\sigma_H = s_s$ も含まれている。従って、式(B.3)によって σ_P に $s_s = \sigma_H$ を加味することはダブルカウントとなり、不合理である。

そこで、今年度の技能試験結果の判定に用いる $\hat{\sigma}$ は配付試料のばらつきを含んだ技能試験結果の標準偏差 σ_{P} だけを用いることにする。これを四分数法で求めると、前述の式(4.3)である。

4.2.2 二つの試料による技能試験結果の評価

今回は二つの試料(A 試料と K 試料)の試験結果(a と b)から,それぞれの z スコア(z_A と z_K)が計算できる。この z スコアを式(4.2)の基準に

基づき評価した結果、「不満足」あるいは「疑わしい」場合には、試験機器・試験方法・試験環境・試験員の技量などのチェックや改善に取り組む。「満足」という結果の場合はひとまず問題はないと考えて良い。

A 試料の試験結果 (a) を横軸に, K 試料の試験結果 (b) を縦軸にとると, 試験結果の散布図が描ける。この図にそれぞれのzスコアの基準値($z=\pm 3$, $z=\pm 2$) を描くと, 評価がより分かり易くなる。式 (4.3) に $z_i=\pm 3$, $z_i=\pm 2$, $x_i=a$, $x_i=b$ を代入すると次の 8 式 が得られ, これらが基準値の境界であり, これを散布 図に描くと **図** 4.1 のようになる。

 $z = \pm 3$ の境界: $a = Q_2 \pm 3 \times (Q_3 - Q_1) \times 0.7413$

 $b = Q_2 \pm 3 \times (Q_3 - Q_1) \times 0.7413$

 $z = \pm 2$ の境界: $a = Q_2 \pm 2 \times (Q_3 - Q_1) \times 0.7413$ $b = Q_2 \pm 2 \times (Q_3 - Q_1) \times 0.7413$

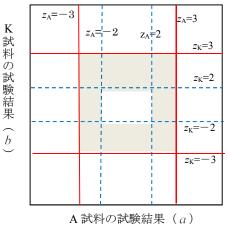


図 4.1 試験結果の z スコアの境界

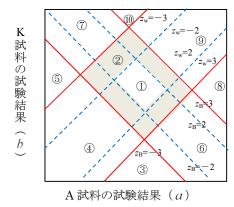


図 4.2 和と差の z スコアの境界

なるのは、二つの試料の偏りが逆方向(一方が大きく他方が小さい)の場合に生じるので、たとえ一つずつ試料のzスコアが満足の場合でも差のzスコアが悪い結果になることに注意したい。従って、和のzスコア(z_B)により試験機関間の偏りが判定できるし、差のzスコア(z_W)により試験機関内のばらつきが判断できる。

この場合、試験結果の散布図に基準値($z=\pm 3$ 、 $z=\pm 2$)を描くと、図 4.2 のようになる。基準

値の境界を示す式は次の8式である。

 $z = \pm 3$ の境界: $a - b = Q_2 \pm 3 \times (Q_3 - Q_1) \times 0.7413$

 $a + b = Q_2 \pm 3 \times (Q_3 - Q_1) \times 0.7413$

 $z = \pm 2$ の境界: $a + b = Q_2 \pm 2 \times (Q_3 - Q_1) \times 0.7413$

 $a-b = Q_2 \pm 2 \times (Q_3 - Q_1) \times 0.7413$

ここに、 Q_1 、 Q_2 、 Q_3 は (a+b) あるいは (a-b) の四分位数である。

図 4.2 では、基準値を表す 8 本の線により① \sim ⑩の区画ができ、プロットされる試験結果の偏りとばらつきが表 4.1 のように評価できる。

表 4.1 散布図の 10 区画とその評価

区画	機関間変動	機関内変動	評価
1	$ z_{\mathrm{B}} \leq 2$	$ z_{\mathrm{W}} \leq 2$	偏りもなく、ばらつきも小さい。
	$2 < z_{\rm B} < 3$	$2 < z_{\rm W} < 3$	
2	$2 < z_{\rm B} < 3$	$ z_{\mathrm{W}} \leq 2$	偏りかばらつきの何れか,あるいは両方に疑わしい点がある。
	$ z_{\mathrm{B}} \leq 2$	$2 < z_{\rm W} < 3$	
3	$z_{\rm B} \leq -3$	$z_{\mathrm{W}} \geqq 3$	小さい方に偏りがあり、ばらつきも大きい。
5	$z_{\mathrm{B}} \leq -3$	$z_{\mathrm{W}} \leq -3$	データの何れかに引きずられている場合もある。
8	$z_{\mathrm{B}}{\geqq}3$	$z_{\mathrm{W}} \geq 3$	大きい方に偏りがあり、ばらつきも大きい。
10	$z_{\mathrm{B}} \geqq 3$	$z_{\mathrm{W}} \leq -3$	データの何れかに引きずられている場合もある。
4	$z_{\rm B} \leq -3$	$ z_{\mathrm{W}} < 3$	小さい方に偏りがあるが、ばらつきは小さい。
9	$z_{\mathrm{B}} \geqq 3$	$ z_{\mathrm{W}} < 3$	大きい方に偏りがあるが、ばらつきは小さい。
6	$ z_{\rm B} < 3$	$z_{\mathrm{W}} \geqq 3$	偏りはないが,ばらつきが大きい。
7	$ z_{\rm B} $ $<$ 3	$z_{ m W}$ \leq -3	何れかのデータが大きく離れている場合もある。

5 試験結果の評価

5.1 zスコアの計算とその評価

各試験機関から報告された試験結果を,(1)土粒子の密度,(2)含水比,(3)50%粒径,(4)細粒分含有率,(5)粘土分含有率,(6)液性限界,(7)塑性限界の7項目で評価する。土粒子の密度、含水比,塑性限界は3個の平均値である。

A 試料の試験結果を a、 z スコアを z_A 、 K 試料の試験結果を b、 z スコアを z_K で表す。 次ページ以降に,項目ごとに①試験結果,②z スコアの計算表,③ z_A と z_K の昇順のグラフ,④ A 試料と K 試料の試験結果の散布図に z_A と z_K の基準値を描いた図,⑤同じ散布図に和(a+b)の z スコア(試験機関間の偏りを評価)と差(a-b)の z スコア(試験機関内のばらつきを評価)の基準値を描いた図をまとめる。

各項目の図表番号は次のようである。

表 5.1 各項目の図表番号

		0-777	0- b- 0	④散布図に	⑤散布図に和と
評価項目	①試験結果	②z スコア の計算表	③z _A と z _K の 昇順のグラフ	$z_{\mathrm{A}} \succeq z_{\mathrm{K}} \mathcal{O}$	差の z スコアの
		グロ昇公	升順のグ ノフ	基準値	基準値
(1) 土粒子の密度	図 5.1, 図 5.2	表 5.2	図 5.3, 図 5.4	図 5.5	図 5.6
(2) 含水比	図 5.7, 図 5.8	表 5.3	図 5.9, 図 5.10	図 5.11	図 5.12
(3)50%粒径	図 5.13, 図 5.14	表 5.4	図 5.15, 図 5.16	図 5.17	図 5.18
(4) 細粒分含有率	図 5.19, 図 5.20	表 5.5	図 5.21, 図 5.22	図 5.23	図 5.24
(5) 粘土分含有率	図 5. 25, 図 5. 26	表 5.6	図 5.27, 図 5.28	図 5.29	図 5.30
(6) 液性限界	図 5.31, 図 5.32	表 5.7	図 5.33, 図 5.34	図 5.35	図 5.36
(7)塑性限界	図 5.37, 図 5.38	表 5.8	図 5.39, 図 5.40	図 5.41	図 5.42

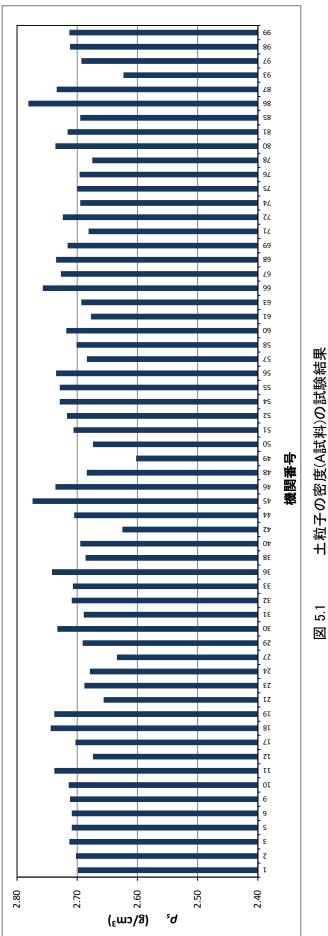


表 5.2 土粒子の密度の測定値とそのzスコア

=	`nı 亡 /±							CUZ人.		=十年今 长	※田中へ	フーマ
試験	測定値			zスコア	K試料の			機関間のz			銭関内の2	
機関名	A試料	K試料	順位	z_{A}	順位	$z_{ m K}$	A+K	順位	z_{B}	A-K	順位	z_{W}
1	2.699	2.649	24	-0.26	17	-0.36	5.348	22	-0.26	0.050	42	0.67
2	2.702	2.650	27	-0.16	20	-0.33	5.352	23	-0.19	0.052	44	0.84
<u>3</u> 5	2.713 2.709	2.671 2.673	37 32	0.23	37 39	0.36 0.43	5.384 5.382	39 37	0.38 0.35	0.042 0.036	29 13	0.00 -0.51
6	2.709	2.661	32	0.09	31	0.43	5.370	33	0.33	0.036	40	0.51
9	2.712	2.671	35	0.19	37	0.36	5.383	38	0.13	0.048	28	-0.08
10	2.712	2.682	39	0.13	43	0.72	5.396	44	0.60	0.032	7	-0.84
11	2.738	2.699	54	1.10	53	1.28	5.437	56	1.33	0.039	24	-0.25
12	2.674	2.609	6	-1.13	6	-1.67	5.283	6	-1.42	0.065	50	1.94
17	2.703	2.656	28	-0.12	27	-0.13	5.359	30	-0.06	0.047	37	0.42
18	2.744	2.692	57	1.31	48	1.05	5.436	55	1.31	0.052	44	0.84
19	2.738	2.691	54	1.10	47	1.01	5.429	47	1.19	0.047	38	0.42
21	2.656	2.573	5	-1.76	5	-2.85	5.229	5	-2.39	0.083	57	3.46
23	2.688	2.652	15	-0.64	22	-0.26	5.340	17	-0.40	0.036	13	-0.51
24	2.679	2.658	10	-0.96	29	-0.07	5.337	14	-0.46	0.021	3	-1.77
27	2.634	2.543	4	-2.52	3	-3.83	5.177	3	-3.31	0.091	58	4.13
29	2.691	2.662	17	-0.54	32	0.07	5.353	25	-0.17	0.029	5	-1.10
30	2.733	2.697	48	0.92	50	1.21	5.430	48	1.21	0.036	13	-0.51
31 32	2.689 2.709	2.653	16 32	-0.61	24	-0.23 -0.75	5.342	18	-0.37 -0.39	0.036	13	-0.51 2.53
32	2.709	2.637 2.663	31	0.09	11 33	-0.75 0.10	5.346 5.370	21 32	-0.29 0.13	0.072 0.044	55 34	0.17
36	2.742	2.705	56	1.24	56	1.47	5.447	57	1.51	0.044	20	-0.42
38	2.742	2.652	14	-0.71	22	-0.26	5.338	15	-0.44	0.037	8	-0.42
40	2.695	2.639	20	-0.40	12	-0.69	5.334	13	-0.51	0.054	47	1.18
42	2.625	2.556	3	-2.84	4	-3.40	5.181	4	-3.24	0.069	53	2.28
44	2.705	2.653	29	-0.05	24	-0.23	5.358	29	-0.08	0.052	44	0.84
45	2.774	2.731	59	2.35	59	2.32	5.505	59	2.55	0.043	32	0.08
46	2.736	2.694	52	1.03	49	1.11	5.430	48	1.21	0.042	29	0.00
48	2.684	2.689	12	-0.78	44	0.95	5.373	34	0.19	-0.005	1	-3.96
49	2.602	2.509	1	-3.64	1	-4.94	5.111	1	-4.49	0.093	59	4.30
50	2.674	2.644	6	-1.13	14	-0.52	5.318	10	-0.80	0.030	6	-1.01
51	2.706	2.647	30	-0.02	15	-0.43	5.353	25	-0.17	0.059	48	1.43
52	2.717	2.649	42	0.37	17	-0.36	5.366	31	0.06	0.068	52	2.19
54	2.729	2.705	46	0.78	56	1.47	5.434	53	1.28	0.024	4	-1.52
55	2.729	2.689	46	0.78	44	0.95	5.418	46	0.99	0.040	27	-0.17
56 57	2.735 2.684	2.697 2.648	50 12	0.99 -0.78	50 16	1.21 -0.39	5.432 5.332	50 12	1.24 -0.54	0.038 0.036	21 13	-0.34 -0.51
58	2.701	2.653	26	-0.78	24	-0.39	5.354	28	-0.15	0.030	40	0.51
60	2.718	2.675	43	0.19	40	0.49	5.393	42	0.13	0.048	32	0.01
61	2.677	2.635	9	-1.03	10	-0.82	5.312	8	-0.90	0.042	29	0.00
63	2.693	2.659	18	-0.47	30	-0.03	5.352	23	-0.19	0.034	10	-0.67
66	2.757	2.719	58	1.76	58	1.93	5.476	58	2.03	0.038	22	-0.34
67	2.727	2.649	45	0.71	17	-0.36	5.376	35	0.24	0.078	56	3.04
68	2.735	2.699	50	0.99	53	1.28	5.434	52	1.28	0.036	13	-0.51
69	2.716	2.678	40	0.33	42	0.59	5.394	43	0.56	0.038	22	-0.34
71	2.681	2.663	11	-0.89	33	0.10	5.344	19	-0.33	0.018	2	-2.02
72	2.724	2.689	44	0.61	44	0.95	5.413	45	0.90	0.035	11	-0.59
74	2.695	2.630	20	-0.40	9	-0.98	5.325	11	-0.67	0.065	50	1.94
75	2.700	2.639	25	-0.23	12	-0.69	5.339	16	-0.42	0.061	49	1.60
76 78	2.696	2.657	23	-0.37 -1.10	28	-0.10	5.353	25	-0.17	0.039	24	-0.25
80	2.675 2.736	2.625 2.697	8 52	-1.10 1.03	8 50	-1.14 1.21	5.300 5.433	7 51	-1.12 1.26	0.050	42 24	0.67 -0.25
81	2.736	2.669	40	0.33	36	0.29	5.385	40	0.40	0.039	38	0.42
85	2.695	2.650	20	-0.40	20	-0.33	5.345	20	-0.31	0.047	35	0.42
86	2.781	2.746	60	2.59	60	2.81	5.527	60	2.94	0.035	11	-0.59
87	2.734	2.700	49	0.96	55	1.31	5.434	53	1.28	0.034	8	-0.67
93	2.623	2.513	2	-2.91	2	-4.81	5.136	2	-4.05	0.110	60	5.73
97	2.693	2.624	18	-0.47	7	-1.18	5.317	9	-0.81	0.069	53	2.28
98	2.712	2.666	35	0.19	35	0.20	5.378	36	0.28	0.046	36	0.34
99	2.713	2.677	37	0.23	41	0.56	5.390	41	0.49	0.036	13	-0.51
平均值(g/cm³)	2.704	2.658					5.362			0.047		
標準偏差(g/cm³)	0.0333	0.0455	<u> </u>		<u></u>		0.0774			0.0191	<u> </u>	
変動係数 (%)	1.23	1.71					1.44			40.8		
$Q_1(15.75)$	2.689	2.648					5.339			0.036		
$Q_2(30.5)$	2.707	2.660					5.363			0.042		
$Q_3(45.25)$	2.728	2.689					5.414			0.052		
$IQR = Q_3 - Q_1$	0.039	0.041					0.075			0.016		
$\sigma_1 = IQR \times 0.7413$	0.0287	0.0306					0.0560			0.0119		
$v_1 = (\sigma_1/Q_2) \times 100$	1.06	1.15					1.04			28.2		
~ ~ ~												

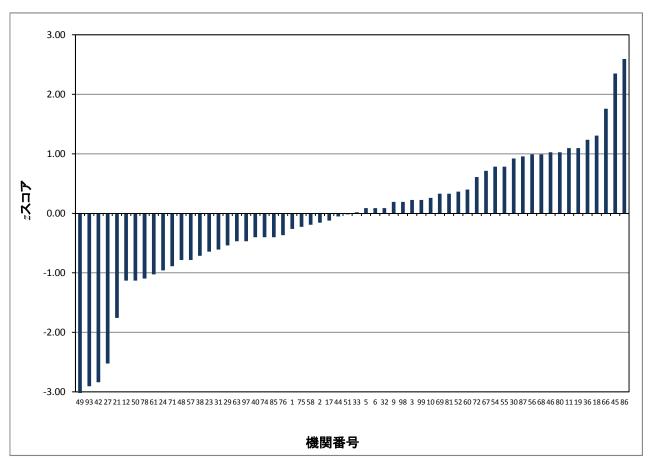


図 5.3 土粒子の密度(A試料)のzスコア

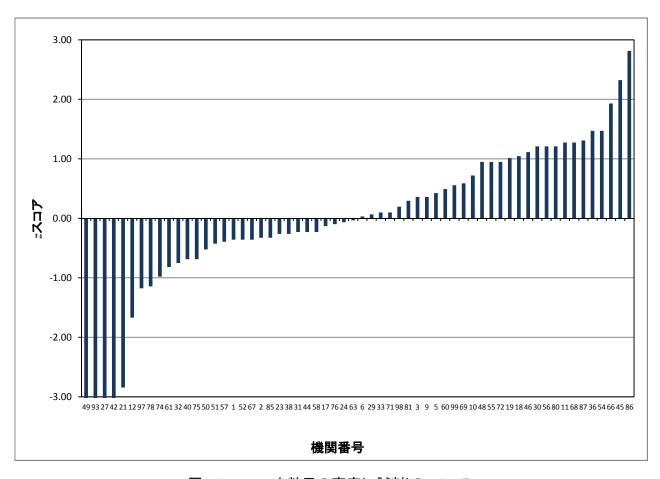


図 5.4 土粒子の密度(K試料)のzスコア

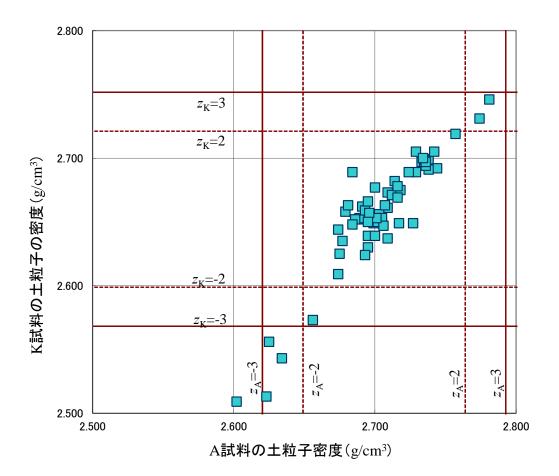


図 5.5 散布図による評価 (土粒子の密度)

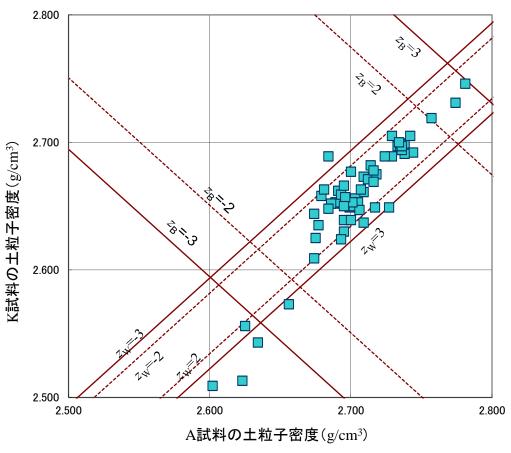
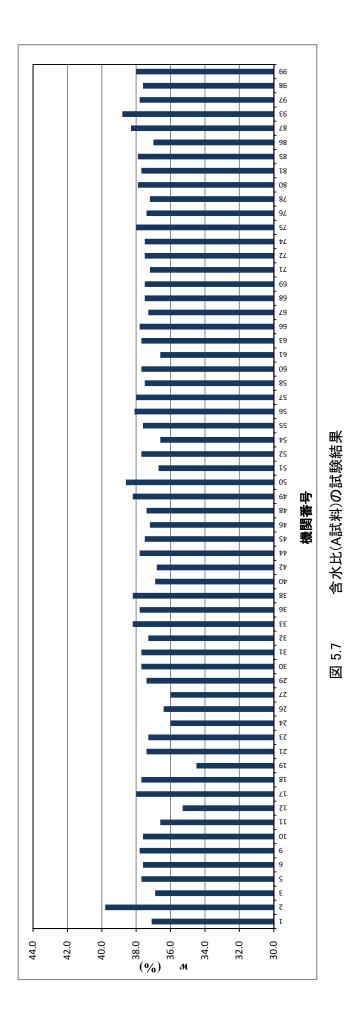



図 5.6 z_{B} , z_{W} による評価(土粒子の密度)

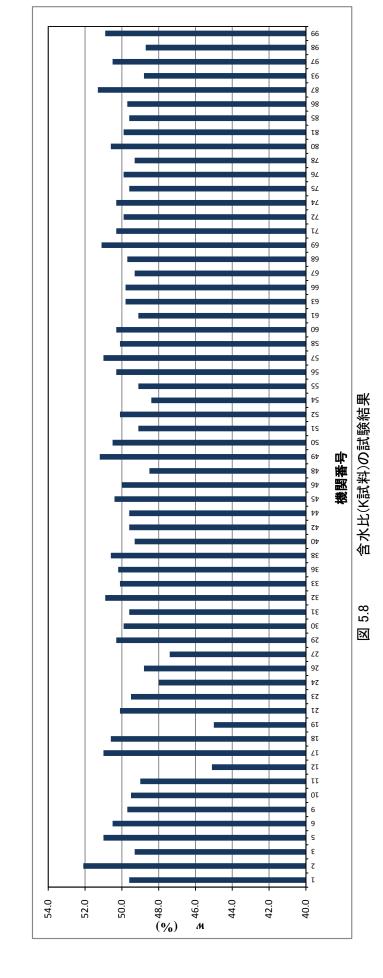


表5.3 含水比の測定値とそのzスコア

研究性	=+FA	测宁	古(0/)	1くり.						フラマ	=十日全 比	組出中心。	フーマ
1 37,1 46,6 14 -1.12 29 -0.37 66,7 17 -0.67 -1.25 23 -0.15 33 38,8 52 61 4.05 61 2.70 81,9 61 3.71 -1.23 35 0.15 3.05 3	試験												
2	機関名												
3 38.9 49.3 11 -1.57 14 -0.74 86.2 11 -1.10 -12.4 27 -0.00 5 37.7 51.0 35 0.22 55 1.35 88.7 53 1.01 -1.33 3 -1.35 6 37.6 50.5 31 0.00 47 0.74 88.1 45 0.00 1.13 3 3 -1.35 9 37.8 49.7 43 0.05 26 -0.25 87.5 28 0.00 -1.10 46 0.75 10 37.6 48.5 31 0.00 18 -0.49 87.1 21 -0.44 -1.15 44 0.75 11 38.6 48.0 6 -2.25 10 -1.10 85.5 7 -1.80 -1.24 27 0.00 12 35.8 44.1 2 -5.10 2 -5.08 80.0 2 -9.99 -9.8 61 8.95 13 37.7 50.6 30 0.22 50 0.86 86.3 48 0.67 -1.25 9 -9.5 19 34.5 48.0 1 -6.97 1 -0.01 79.5 1 -4.74 -10.5 99 -9.8 21 37.4 50.1 21 -0.64 38 0.25 87.5 28 0.00 -1.27 17 70.5 22 37.3 48.5 18 -0.67 18 -0.49 80.8 20 -0.59 -1.22 39 0.30 24 38.0 48.0 3 -3.00 4 -2.33 84.0 4 -2.35 -1.22 49 0.30 25 36.0 44.0 3 -3.00 3 -3.00 3 -3.00 2 -3.05 -1.22 41 -0.00 27 38.0 47.4 50.3 21 -0.45 41 0.49 87.7 39 -1.24 27 0.00 29 37.4 50.3 21 -0.45 41 0.49 87.7 39 -1.24 27 0.00 29 37.4 50.3 21 -0.45 41 0.49 87.7 39 0.77 -1.22 39 -0.35 30 37.7 49.9 35 0.22 31 0.00 87.8 33 0.76 -1.24 27 0.00 27 38.0 47.4 50.3 21 -0.45 41 0.49 87.7 39 0.77 -1.29 9 -0.75 30 37.7 49.9 35 0.22 31 0.00 87.8 33 0.76 -1.24 27 0.00 27 38.0 47.4 50.3 21 -0.45 41 0.49 87.7 39 0.77 -1.29 9 -0.75 30 37.7 49.9 35 0.22 31 0.00 87.8 33 0.76 -1.24 27 0.00 40 40 40 40 40 40 40	1												
5													
6													
9 9 378 487 43 0.46 26 -0.25 87.5 28 0.00 -1119 46 0.075 11 1 36.6 49.0 6 -2.25 10 -1.10 86.6 7 -1.60 -12.4 27 0.00 11 36.6 49.0 6 -2.25 10 -1.10 86.6 7 -1.60 -12.4 27 0.00 11 36.8 3.3 46.1 2 -5.17 2 -5.89 80.4 2 -5.99 -9.8 61 3.90 17 38.0 51.0 50 0.90 55 1.35 89.0 56 1.25 -1.50 5 -0.90 18 37.7 50.6 35 0.22 50 0.80 88.3 48 0.97 -12.9 9 -8.8 61 3.90 18 37.7 50.6 35 0.22 50 0.80 88.3 48 0.97 -12.9 9 -0.75 19 34.5 45.0 1 -4.57 1 -4.57 1 -5.01 79.5 1 -6.74 -10.5 19 -0.25 19 34.5 45.0 1 -4.57 1 -4.57 1 -5.01 79.5 1 -6.74 -10.5 19 -2.55 19 34.5 48.0 1 -4.57 1 -4.57 1 -5.01 79.5 1 -6.74 -10.5 19 -2.55 19 34.5 48.6 8 5 -2.70 8 -1.35 86.0 4 -2.25 -1.20 43 0.00 26 38.4 48.8 5 -2.70 8 -1.35 86.2 6 -1.94 -1.24 27 0.00 27 30.0 47.4 3 -3.90 3 -3.07 83.4 3 -3.46 -11.4 59.0 1.20 29 37.4 50.3 21 -0.45 41 0.49 87.7 39 0.17 -1.29 3 -0.75 30 37.7 48.9 35 0.22 31 0.00 87.6 33 0.08 -1.22 38 0.03 31 37.7 48.8 35 0.22 20 -0.37 87.3 25 -0.17 -1.19 47 0.75 32 37.3 50.9 18 -0.67 53 1.23 86.2 46 0.59 -1.36 1 -1.03 33 38.2 50.1 55 15 3 3 6.0 2 2 0.00 88.8 8.3 48 0.07 -1.19 47 0.75 36 37.8 50.2 43 0.45 41 0.09 87.7 39 0.17 -1.19 47 0.75 36 37.8 50.2 43 0.45 40 0.37 88.0 43 0.04 -1.24 20 0.00 38 88.2 50.6 55 1.35 36 0.28 83 48 0.07 -1.19 47 0.75 36 37.8 50.2 43 0.45 40 0.37 88.0 43 0.04 -1.24 20 0.00 42 3.3 3.3 82 50.1 55 1.35 36 0.28 83 84 60 0.59 -1.35 1 -1.00 42 3.3 3.3 82 50.1 55 1.35 36 0.28 83 80 43 0.04 -1.24 20 0.00 42 3.3 3.3 82 50.1 55 1.35 36 0.28 83 80 43 0.04 -1.24 20 0.00 43 3.3 8.2 50.6 55 1.35 50 0.88 88.8 54 1.10 -1.24 2.7 0.00 44 5.3 7.5 50.4 45 50.4 41 -0.57 50.8 88.8 54 1.10 -1.24 2.7 0.00 44 5.3 7.5 50.4 45 50.4 41 -0.00 88 88.8 54 1.10 -1.24 2.7 0.00 48 3.7 8 50.4 48.5 21 -0.45 6.0 6.1 1.25 9.0 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2													
10													
11													
12													
17													
18													
19													
23 373 495 18 −0.67 18 −0.49 86.8 20 −0.59 −1.22 36 0.80 26 0.43 0.60 4 −2.95 −1.20 43 0.60 26 36.4 48.8 5 −2.70 8 −1.35 85.2 6 −1.94 −1.24 27 0.00 27 38.0 47 −2.9 47 −2.0 1.0 −2.0 −2.0 1.0 −2.0 −2.0 1.0 −2.0 1.0 −2.0 −2.0 1.0 −2.0 −2.0 1.0 −2.0 −2.0 1.0 −2.0 −2.0 −2.0 −2.0 −2.0 −2.0 −2.0 −2		34.5	45.0	1		1	-6.01	79.5	1		-10.5	59	2.85
24 360 480 3 ~3.50 4 ~2.33 84.0 4 ~2.95 ~1.20 43 0.60 27 36.0 47.4 3 ~3.60 3 ~3.07 83.4 3 ~3.46 ~11.4 56 1.50 29 37.4 40.3 ~2.0 ~0.46 41 0.49 87.7 39 0.17 ~1.29 9.07.5 30 37.7 40.9 35 0.22 20 ~3.78 50.0 7.47 47 7.75 32 37.3 50.9 18 ~0.67 53 12.3 88.2 46 0.59 ~13.6 1 ~1.80 7.47 7.75 36 37.8 50.2 43 0.45 40 0.37 88.0 43 0.42 7.24 7.47 7.75 36 37.8 80.2 41 7.17 7.17 7.17 4.0 0.34 1.29 7.00 40 3.3 38.0	21	37.4	50.1	21	-0.45	36	0.25	87.5	28	0.00	-12.7	17	-0.45
26													
27 3860 474 3 3 -360 3 -307 83.4 3 -3.7 86 -11.4 56 1.50 29 97.4 80.3 21 -0.45 41 0.49 87.7 39 0.17 -1.29 9 -0.75 30 37.7 49.9 35 0.22 20 -0.37 87.3 25 -0.17 -1.12 38 0.30 31 37.7 49.9 35 0.22 20 -0.37 87.3 25 -0.17 -1.12 38 0.30 32 37.3 50.9 18 -0.67 53 12.3 88.2 46 0.59 -13.6 11 -1.50 32 37.3 50.9 18 -0.67 53 12.3 88.2 46 0.59 -13.6 11 -1.50 36 37.8 50.2 43 0.45 40 0.37 88.0 43 0.42 -12.4 26 0.00 38 38 38.2 50.6 55 1.35 50 0.86 88.8 54 11.0 -1.24 27 0.00 40 36.9 49.3 111 -1.57 14 -0.74 82.2 11 -1.10 -1.24 27 0.00 40 36.9 49.3 111 -1.57 14 -0.74 82.2 11 -1.10 -1.24 27 0.00 41 32.8 40.6 10 -1.80 20 -0.37 87.4 22.6 -0.08 -11.8 51 0.80 44 37.4 80.5 21 -0.40 0.35 0.12 87.2 22 0.34 -1.29 3 0.34 45 37.5 50.4 25 -0.22 46 0.81 87.9 42 0.34 -1.29 3 0.34 12.9 48.8 48.8 48.8 49.8 49.8 49.8 49.8 49													
29													
30 37.7 49.9 55 0.22 31 0.00 87.8 33 0.08 -12.2 38 0.30 31 37.7 49.9 55 0.22 20 -0.37 87.3 25 -0.17 -11.9 47 0.75 32 37.3 50.9 18 -0.67 53 12.3 88.2 48 0.59 -13.6 11 -1.90 33 38.2 50.1 55 1.35 36 0.25 88.3 48 0.67 -11.9 47 0.75 36 37.8 50.2 43 0.45 40 0.37 88.0 43 0.42 -12.4 26 0.00 40 35.9 49.3 111 -1.57 14 -0.74 85.2 11 -1.10 -12.4 27 0.00 40 35.9 49.3 111 -1.57 14 -0.74 85.2 11 -1.10 -12.4 27 0.00 41 32 88 46.6 10 -1.80 20 -0.37 87.4 25 -0.09 -11.8 51 0.80 42 28.8 46.6 10 -1.80 20 -0.37 87.4 25 -0.09 -11.8 51 0.80 44 27.5 50.4 25 -0.22 46 0.81 87.9 42 0.34 -12.9 9 -0.75 48 37.5 50.4 25 -0.22 46 0.81 87.9 42 0.34 -12.9 9 -0.75 48 37.4 48.5 21 -0.45 6 -1.72 85.9 10 -1.35 -11.1 57 1.85 49 38.2 51.2 55 1.35 59 1.59 88.4 59 1.0 -1.35 -11.1 57 1.85 50 38.6 50.5 59 2.25 47 0.74 85.1 88.5 9 1-1.43 -1.24 27 0.00 52 37.7 50.1 35 0.22 36 0.22 88.9 88.5 9 -1.43 -1.24 27 0.00 52 37.7 50.1 35 0.22 36 0.22 88.9 1.59 88.4 59 1.00 -1.35 -11.1 57 1.85 51 38.6 50.5 59 2.25 47 0.74 85.1 88.5 9 -1.43 -1.24 27 0.00 52 37.7 50.1 35 0.00 11 -0.98 85.7 1.59 88.4 59 1.00 -1.35 -11.1 57 1.85 51 38.6 30.5 59 2.25 47 0.74 85.1 88.5 9 -1.43 -1.24 27 0.00 52 37.7 50.1 35 0.00 11 -0.98 85.7 1.7 -0.67 -1.15 55 1.35 59 1.59 88.4 59 1.00 -1.35 -11.1 57 1.85 56 38.6 30.5 59 2.25 47 0.74 85.1 88.5 9 -1.43 -1.24 27 0.00 52 37.7 50.1 35 0.00 11 -0.98 85.7 17 -0.67 -1.15 55 1.35 59 1.59 88.4 59 1.00 -1.35 -11.1 57 1.85 56 88.1 85 0.5 -0.22 36 0.25 87.8 41 0.25 -1.24 27 0.00 52 37.7 50.1 35 0.00 11 -0.98 85.7 17 -0.67 -1.15 55 1.35 59 1.59 88.9 0 -1.43 -1.24 27 0.00 52 37.7 50.1 35 0.00 50 0.00 11 -0.98 85.7 17 -0.67 -1.15 55 1.35 59 1.35 50 0.00 11 -0.98 85.7 17 -0.67 -1.15 55 1.35 59 1.35 50 0.00 11 -0.98 85.7 17 -0.67 -1.12 52 0.00 55 1.35 50 0.00 11 -0.98 85.7 17 -0.67 -1.13 55 1.35 59 1.35 50 0.00 11 -0.98 85.7 17 -0.67 -1.13 55 0.00 11 -0.98 85.7 17 -0.67 -1.13 55 0.00 11 -0.98 85.7 17 -0.67 -1.13 55 0.00 11 -0.98 85.7 17 -0.67 -1.13 55 0.00 11 -0.98 85.7 17 -0.67 -1.13 55 0.00 11 -0.98 85.7 17 -0.67 -1.13 55 0.00 11 -0.98 85.7 17 -0.67 -1.													
31 377 49.6 35 0.22 20 -0.37 87.3 25 -0.17 -119 47 0.75 32 37.3 50.9 18 -0.67 53 12.3 88.2 46 0.59 -1.36 1 -1.36 1 -1.36 33 38.2 50.1 55 1.35 36 0.25 88.3 48 0.67 -119 47 0.75 36 37.8 50.2 43 0.45 40 0.37 88.0 43 0.42 -124 26 0.00 38 39.2 50.6 55 1.35 50 0.86 88.8 54 1.10 -1.24 27 0.00 40 36.9 49.3 11 -1.57 14 -0.74 86.2 11 -1.10 -1.24 27 0.00 41 36.9 49.3 11 -1.57 14 -0.74 86.2 11 -1.10 -1.24 27 0.00 42 36.8 49.8 10 -1.80 20 -0.37 86.4 14 -0.93 -1.28 14 -0.60 44 37.8 48.6 43 0.45 20 -0.37 87.4 28 -0.08 -1.18 51 0.80 45 37.5 50.4 25 -0.22 46 0.61 87.9 42 0.34 -1.28 9 -0.75 46 37.2 50.0 15 -0.90 35 0.12 87.2 22 -0.25 -1.28 15 -0.00 48 37.4 48.5 21 -0.45 6 -1.72 85.9 10 -1.35 1.11 57 1.95 49 382 51.2 55 1.35 59 1.59 89.4 59 1.60 -1.30 5 -0.90 50 38.6 50.5 59 2.25 47 0.74 89.1 58 1.35 1.19 47 0.95 51 36.7 49.1 9 -2.02 11 -0.98 85.8 9 -1.43 -124 27 0.00 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 11 55 55 3.5 56 3.81 50.9 1.00 -1.30 5 -0.90 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 11 8.5 5 0.95 58 37.6 49.1 31 0.00 11 -0.98 85.8 9 -1.43 -124 27 0.00 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 11 18 52 0.90 58 37.5 50.1 25 0.02 36 0.25 87.8 41 0.25 -1.24 27 0.00 58 37.5 50.1 25 0.00 9.0 55 1.35 59 0.22 36 0.25 87.8 41 0.25 -1.24 27 0.00 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 11 18 52 0.90 58 37.5 50.1 25 0.02 36 0.25 87.8 49.1 0.25 -1.24 27 0.00 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 -1.18 52 0.90 58 37.5 50.1 25 0.02 36 0.25 87.8 41 0.25 -1.24 27 0.00 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 -1.18 52 0.90 58 37.5 50.1 25 0.02 36 0.25 87.8 41 0.25 -1.24 27 0.00 58 37.5 50.1 25 0.02 36 0.25 87.8 41 0.25 -1.24 27 0.00 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 -1.18 52 0.90 58 37.5 50.1 25 0.02 36 0.25 87.8 41 0.25 -1.24 27 0.00 54 36 50.3 37.5 50.1 25 0.02 38 0.00 38 50.7 17 0.07 1.15 55 1.35 59 0.00 37 5.00 38 50.0 1.20 38 0.00 38 50.0 1.20 38 0.00 38 50.0 1.20 38 0.00 38 50.0 1.20 38 0.00 38 50.0 1.20 38 0.00 38 50.0 1.20 38 0.00 38 50.0 1.20 38 0.00 38 50.0 1.20 38 0.00 38 50.0 1.20 38 0.00 38 50.0 1.20 38 0													
32 37.3 50.9 18 -067 53 123 882 46 0.09 -13.6 1 -1.80 33 382 501 55 1.55 36 0.25 88.3 48 0.67 -11.9 47 0.75 36 378 502 43 0.45 40 0.37 88.0 43 0.42 -12.4 26 0.00 40 36.9 49.3 11 -1.57 14 -0.74 86.2 11 -1.10 -12.4 27 0.00 42 38.8 48.6 10 -1.80 20 -0.37 88.4 14 -0.93 -12.8 14 -0.64 44 37.8 48.6 43 0.45 20 -0.37 88.4 14 -0.93 -12.8 14 -0.64 45 37.5 50.4 25 -0.22 46 0.61 87.9 42 0.34 -12.9 9 -0.75 48 37.5 50.4 25 -0.22 46 0.61 87.9 42 0.34 -12.9 9 -0.75 48 37.4 48.5 21 -0.45 6 -1.72 85.9 10 -1.35 -11.8 15 10.90 50 38.6 50.5 59 22.5 47 0.74 89.1 58 13.5 -11.9 17.7 1.95 51 38.6 50.5 59 22.5 47 0.74 89.1 58 13.5 -11.9 47 0.70 52 37.7 50.1 35 0.22 36 0.25 87.8 41 0.25 -12.4 1.2 7 0.00 52 37.7 50.1 35 0.22 36 0.25 87.8 41 0.25 -12.4 1.1 8.2 7 0.00 53 38.6 49.1 9.1 0.00 11 -0.98 85.8 9 -1.43 -12.4 27 0.00 53 37.5 50.4 25 -0.22 36 0.25 87.8 41 0.25 -12.4 27 0.00 52 37.7 50.1 35 0.22 36 0.25 87.8 41 0.25 -12.1 1.1 55 0.90 53 38.6 50.5 59 2.25 47 0.74 89.1 58 13.5 -11.9 47 0.75 54 38.6 48.4 6 -2.25 5 -18.4 65.0 5 -2.11 -1.18 52 0.90 55 37.6 49.1 31 0.00 11 -0.98 86.7 17 -0.67 -11.1 82 0.90 55 37.6 49.1 31 0.00 11 -0.98 86.7 17 -0.67 -11.1 82 0.90 53 37.7 50.3 35 0.22 36 0.25 87.8 41 0.25 -12.4 27 0.90 56 38.1 50.3 54 41 0.25 -0.22 36 0.25 87.8 41 0.25 -12.4 27 0.90 58 37.5 50.1 50 0.90 55 1.35 89.0 58 1.28 -13.0 5 -0.90 58 37.5 50.1 50 0.90 55 1.35 89.0 68 1.28 -13.0 5 -0.90 58 37.5 50.1 50 0.90 55 1.35 89.0 68 1.28 -13.0 5 -0.90 58 37.5 50.1 50 0.90 55 1.35 89.0 68 1.28 -13.0 5 -0.90 58 37.5 50.1 50 0.90 55 1.35 89.0 0.76 -12.2 38 0.30 57 38.0 51.0 50 0.90 55 1.35 89.0 68 1.28 -13.0 5 -0.90 58 37.5 50.1 50 0.90 55 1.35 89.0 68 1.28 -13.0 5 -0.90 58 37.5 50.1 50 0.90 55 1.35 89.0 68 1.28 -13.0 5 -0.90 58 37.5 50.1 50 0.90 55 1.35 89.0 68 1.28 -13.0 5 -0.90 58 37.5 50.1 50 0.90 55 1.35 89.0 68 88 88 88 88 88 -1.48 -1.28 19.90 59 50 50 50 50 50 50 50 50 50 50 50 50 50													
33 33 382 50.1 55 1.35 36 0.25 88.3 48 0.67 -119 47 0.75 36 37.8 50.2 43 0.45 40 0.37 88.0 43 0.42 -112.4 26 0.00 38 382 50.6 55 1.35 50 0.86 88.8 54 1.10 -112.4 27 0.00 42 38.8 49.8 10 -1.80 20 -0.37 86.4 11 -1.10 -12.4 27 0.00 42 38.8 49.6 10 -1.80 20 -0.37 86.4 11 -0.03 -1.24 27 0.00 42 38.8 49.6 10 -1.80 20 -0.37 86.4 11 -0.03 -1.28 11 -0.00 42 38.8 49.6 12 -1.05 20 -0.37 86.4 11 -0.03 -1.28 11 -0.00 44 37.8 49.6 43 0.45 20 -0.37 87.4 20 -0.38 -1.28 11 -0.00 45 37.5 50.4 25 -0.22 46 0.61 67.9 42 0.34 -1.29 9 -0.75 46 37.2 50.0 15 -0.90 35 0.12 87.2 22 -0.25 -1.28 15 -0.00 48 37.4 48.5 21 -0.45 6 -1.72 85.9 10 -1.33 -1.11 57 1.95 49 38.2 51.2 55 1.35 59 1.59 89.4 59 1.50 -1.30 -1.11 57 1.95 50 38.6 50.5 59 2.25 47 0.74 89.1 58 1.35 -1.91 47 0.75 51 36.7 49.1 9 -2.02 11 -0.98 85.8 9 -1.43 -12.4 27 0.00 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 -1.18 52 0.90 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 -1.18 52 0.90 55 37.6 49.1 31 0.00 11 -0.98 86.7 17 -0.11 1.15 55 1.35 56 38.1 50.3 54 1.12 41 0.49 88.4 50 0.76 -1.22 38 0.30 58 37.5 50.1 25 -0.22 36 0.25 87.8 41 0.25 -1.24 27 0.00 58 37.5 50.1 25 0.0 9.0 55 1.35 59 1.35 80.7 1.11 55 1.35 59 1.35													
38 378 502 43 0.45 40 0.37 880 43 0.42 -124 26 0.00 40 389 493 11 -157 14 -0.74 862 11 -1.01 -124 27 0.00 40 389 498 11 -1.57 14 -0.74 862 11 -1.01 -124 27 0.00 41 379 496 10 -180 20 -0.37 864 11 -0.03 -128 14 -0.03 41 378 496 40 0.45 20 -0.37 874 26 -0.08 -118 51 0.80 41 378 496 10 -180 20 -0.37 874 26 -0.08 -118 51 0.80 41 378 496 10 -15 -0.22 46 0.61 879 42 0.34 -129 9 -0.15 48 374 485 21 -0.45 6 -1.72 859 10 -1.35 -11.8 51 7.98 49 382 512 55 1.35 59 1.59 884 59 1.60 -13.0 5 -0.90 50 386 50.5 59 2.25 47 0.74 89.1 58 1.35 -11.0 57 1.95 51 386 50.5 59 2.25 47 0.74 89.1 58 1.35 -11.9 47 0.75 51 386 484 6 -2.25 5 -184 85.0 5 -2.11 -1.8 52 0.90 552 377 50.1 35 0.22 36 0.25 878 41 0.25 1.24 27 0.00 553 38.6 50.3 54 48 6 -2.25 5 -184 85.0 5 -2.11 -1.18 52 0.90 555 37.6 49.1 31 0.00 11 -0.98 86.7 17 -0.67 -11.8 52 0.90 55 37.5 38.0 51.0 50 0.90 55 1.35 89.0 56 1.25 -11.18 52 0.90 55 37.5 38.0 51.0 50 0.90 55 1.35 89.0 56 1.26 1.24 27 0.00 58 37.7 50.3 35 0.22 36 0.25 878 41 0.25 -12.4 27 0.00 58 37.7 50.3 35 0.22 36 0.25 878 41 0.25 -12.4 27 0.00 58 37.5 50.3 56 1.12 50 0.90 55 1.35 89.0 56 1.26 1.20 38 0.30 57 38.0 51.0 50 0.90 55 1.35 89.0 56 1.26 1.20 38 0.30 57 38.0 51.0 50 0.90 55 1.35 89.0 56 1.26 1.20 38 0.30 58 37.5 50.1 25 -0.022 36 0.25 87.8 40 0.07 1.12 55 1.35 50 1.35 60 0.37 7 50.3 35 0.22 41 0.49 88.4 50 0.76 1.22 38 0.30 60 37.7 50.3 35 0.22 41 0.49 88.4 50 0.07 1.22 38 0.00 60 37.7 50.3 35 0.22 41 0.49 88.4 60 0.76 1.22 38 0.00 60 37.7 50.3 35 0.22 41 0.49 88.5 78 33 0.08 1.20 43 0.60 61 306 49.1 6 -2.25 11 -0.98 85.7 8 1.15 2.12 1.20 30 60 37.7 50.3 35 0.22 2 41 0.49 88.5 78 33 0.08 1.20 43 0.60 68 37.5 49.7 25 0.02 26 0.02 8 1.75 88 60 0.0 1.21 41 0.45 66 37.8 49.8 43 0.45 29 -0.12 87.6 33 0.08 1.20 43 0.60 68 37.5 49.7 25 0.02 26 0.02 87.8 88.5 1.35 0.00 1.21 41 0.45 86 37.0 49.7 3.3 18 0.00 7.7 1.47 88.3 1.00 1.21 1.00 5 86 37.0 49.7 1.3 1.3 1.3 0.00 7.3 1.4 0.99 1.2 1.2 1.2 1.0 1.9 1.2 1.2 1.0 1.0 1.2 1.2 1.2 1.0 1.0 1.2 1.2 1.2 1.0 1.0 1.2 1.2 1.2 1.0 1.0 1.2 1.2 1.2 1.0 1.0 1.2 1.2 1.2 1.0 1													
38													
40													
442 36.8 49.6 10 -1.80 20 -0.37 88.4 14 -0.93 -12.8 14 -0.93 44 37.8 49.6 43 0.45 20 -0.37 87.4 26 -0.08 1-1.8 51 0.90 45 37.5 50.4 25 -0.22 46 0.61 87.9 42 0.34 -12.9 9 -0.75 46 37.2 50.0 15 -0.90 35 0.12 87.2 22 -0.25 -12.8 15 -0.80 48 37.4 48.5 21 -0.45 6 -1.72 85.9 10 -1.35 -11.1 57 1.95 49 38.2 51.2 55 1.35 59 1.59 89.4 59 1.80 -1.35 -11.1 57 1.95 50 38.6 50.5 59 2.25 47 0.74 89.1 58 1.35 -11.9 47 0.75 51 36.7 49.1 9 -2.02 11 -0.98 85.8 9 -1.43 -12.4 27 0.00 55 30 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 -1.18 52 0.90 55 37.6 49.1 30 0.00 11 -0.98 86.7 17 -0.64 17 -0.15 55 1.35 50 3.6 50 5.0 59 2.5 41.0 4.8 89.1 55 -1.11 57 1.95 55 37.6 49.1 30 0.00 11 -0.98 86.7 17 -0.64 17 -0.15 55 1.35 50 3.8 50 5.0 22 36 0.25 58 78.8 41 0.25 -1.11 1.8 52 0.90 55 37.6 49.1 30 0.00 11 -0.98 86.7 17 -0.67 11.5 55 1.35 50 3.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0													
444													
465 37.5 50.0 25 -0.22 46 0.61 87.9 42 0.34 -12.9 9 -0.75 48 37.2 50.0 15 -0.90 35 0.12 87.2 22 -0.25 -12.8 115 -0.60 48 37.4 48.5 21 -0.45 6 -1.72 85.9 10 -1.35 -11.1 57 1.95 49 38.2 51.2 55 1.35 59 1.59 99.4 59 1.60 -1.35 -11.1 57 1.95 50 38.6 50.5 59 2.25 47 0.74 89.1 58 1.35 -1.13 1.13 -1.19 47 0.75 51 36.7 49.1 9 -2.02 11 -0.98 85.8 9 -1.43 -12.4 27 0.00 52 37.7 50.1 35 0.22 36 0.25 87.8 41 0.25 -12.4 27 0.00 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 -11.8 52 0.90 55 37.6 49.1 31 0.00 111 -0.98 86.7 17 -0.67 -11.5 55 1.35 56 38.1 50.3 54 1.12 41 0.49 88.4 50 0.76 -12.2 38 0.30 57 38.0 51.0 50 0.90 55 1.35 89.0 56 1.26 -13.0 5 -0.90 60 37.7 50.1 35 -0.22 36 0.25 87.8 80.0 56 1.26 -13.0 5 -0.90 61 36.6 49.1 6 -2.25 11 -0.98 86.7 17 -0.67 -11.5 55 1.35 66 38.1 50.3 54 1.12 41 0.49 88.4 50 0.76 -1.22 38 0.30 60 37.7 50.3 35 0.02 41 0.49 88.0 43 0.42 -1.26 22 -0.30 60 37.7 80.3 35 0.02 41 0.49 88.0 43 0.42 -1.26 22 -0.30 60 37.7 50.3 35 0.02 41 0.49 88.0 43 0.42 -1.26 22 -0.30 61 36.6 49.1 6 -2.25 11 -0.98 85.7 8 -1.52 -1.25 23 -0.15 63 37.7 49.8 35 0.22 41 0.49 88.0 43 0.42 -1.26 22 -0.30 66 37.8 49.8 49.1 6 -2.25 11 -0.98 85.7 8 -1.52 -1.25 23 -0.15 63 37.7 49.8 35 0.22 29 -0.12 87.5 28 0.00 -1.21 41 0.45 66 37.8 49.8 35 0.22 29 -0.12 87.5 28 0.00 -1.21 41 0.45 66 37.8 49.8 35 0.22 29 -0.12 87.5 28 0.00 -1.21 41 0.45 68 37.5 49.7 25 -0.22 26 -0.25 87.6 33 0.08 -1.26 21 43 0.60 68 37.5 49.7 25 -0.22 26 -0.25 87.2 22 -0.25 -1.22 36 0.30 69 37.5 50.3 25 -0.22 31 0.00 87.8 40 0.05 -1.21 43 0.60 68 37.5 49.7 25 -0.22 26 -0.25 87.2 22 -0.25 -1.22 38 0.30 85 37.9 49.8 48 0.00 0.00 87.8 40 0.00 87.8 40 0.00 -1.21 41 0.45 80 37.9 50.6 48 0.07 -1.15 50.0 87.5 11 0.00 87.8 40 0.00 -1.21 41 0.45 81 37.7 49.9 25 -0.22 31 0.00 87.6 33 0.08 -1.16 54 1.7 -0.67 99 38.0 49.6 50 0.90 70 -0.37 87.6 33 0.08 -1.12 23 80.30 85 37.9 49.8 48 0.07 0.00 14 0.49 87.5 28 0.00 -1.31 4 1.10 57 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -1.27 1.7 -0.45 88 37.9 49.8 48 0.00 7.7 -1.47 86.5 15 -0.84 -1.21 1.1 1.1 57 1.95 99 38.0 50.9 50 0.90													
48													
49 382 512 55 1.35 59 1.59 894 59 1.60 -13.0 5 -0.90	46	37.2	50.0	15	-0.90	35	0.12	87.2	22	-0.25		15	-0.60
50	48	37.4	48.5	21	-0.45	6	-1.72	85.9	10	-1.35	-11.1	57	1.95
51 36,7 49,1 9 -202 11 -0.98 85,8 9 -1.43 -12.4 27 0.00 52 37,7 50,1 35 0.22 36 0.25 87,8 41 0.25 -12.4 27 0.00 54 36,6 48,4 6 -2.25 5 -1.84 85,0 5 -2.11 -11.8 52 0.90 55 37,6 49,1 31 0.00 11 -0.98 86,7 17 -0.67 -11.5 55 1.35 56 38,1 50,3 54 1.12 41 0.49 88,4 50 0.76 -1.22 38 0.30 57 38,0 51,0 50 0.90 55 1.35 89,0 56 1.26 -13.0 5 -0.90 58 37,5 50,1 25 -0.22 36 0.25 87,6 33 0.08 -12.6 21 -0.30 61 36,6 49,1 6 -2.25 11 -0.98 85,7 8 -1.52 -12.5 23 -0.15 63 37,7 49,8 35 0.22 29 -0.12 87,5 28 0.00 -12.1 41 0.45 66 37,8 49,8 43 0.45 29 -0.12 87,5 28 0.00 -12.1 41 0.45 68 37,5 49,7 25 -0.22 26 -0.25 87,2 22 -0.25 -12.2 36 0.30 69 37,5 51,1 25 -0.22 26 -0.25 87,2 22 -0.25 -12.2 36 0.30 68 37,5 51,1 25 -0.22 26 -0.25 87,2 22 -0.25 -12.2 36 0.30 69 37,5 51,1 25 -0.22 26 -0.25 87,2 22 -0.25 -12.2 36 0.30 69 37,5 51,1 25 -0.22 26 -0.25 87,2 22 -0.25 -12.2 36 0.30 69 37,5 51,1 25 -0.22 26 -0.25 87,2 22 -0.25 -12.2 36 0.30 69 37,5 51,1 25 -0.22 26 -0.25 87,2 22 -0.25 -12.2 36 0.30 69 37,5 50,3 25 -0.22 31 0.00 87,4 26 -0.08 -12.4 27 0.00 74 37,5 50,3 25 -0.22 31 0.00 87,4 26 -0.08 -12.4 27 0.00 74 37,5 50,3 25 -0.22 31 0.00 87,4 26 -0.08 -12.4 27 0.00 76 37,4 49,9 25 -0.22 31 0.00 87,3 24 -0.17 -12.5 23 -0.15 78 37,4 49,9 21 -0.45 31 0.00 87,8 33 0.08 -11.6 41 0.45 80 37,9 50,6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37,7 49,9 35 0.22 31 0.00 87,6 33 0.08 -12.0	49	38.2	51.2	55	1.35	59	1.59	89.4	59	1.60	-13.0	5	-0.90
52 37,7 50,1 35 0.22 36 0.25 87,8 41 0.25 -12.4 27 0.00 54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 -11.8 52 0.90 55 37,6 49.1 31 0.00 11 -0.98 86.7 17 -0.67 -11.5 55 1.35 56 38.1 50.3 54 1.12 41 0.49 88.4 50 0.76 -12.2 38 0.30 57 38.0 51.0 50 0.90 55 1.35 89.0 56 1.26 -13.0 5 -0.90 58 37.5 50.1 25 -0.22 36 0.25 87.6 33 0.08 -12.6 21 -0.30 60 37.7 50.3 35 0.22 41 0.49 88.0 43 0.42 -12.6 22 -0.30 61 36.6 49.1 6 -2.25 11 -0.98 85.7 8 -1.52 -12.5 23 -0.15 63 37.7 49.8 35 0.22 29 -0.12 87.6 33 0.08 -12.0 43 0.60 63 37.8 49.8 43 0.45 29 -0.12 87.6 33 0.08 -12.0 43 0.60 66 37.8 49.8 43 0.45 29 -0.12 87.6 33 0.08 -12.0 43 0.60 68 37.5 49.7 25 -0.22 26 -0.25 87.2 22 -0.25 -12.2 36 0.30 69 37.5 51.1 25 -0.22 58 1.47 88.6 16 -0.76 -12.0 43 0.60 68 37.5 49.7 25 -0.22 58 1.47 88.6 50 0.93 -13.6 1 -1.80 71 37.2 50.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 49.9 25 -0.22 41 0.49 87.5 28 0.00 -13.1 4 -1.05 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -12.4 27 0.00 74 37.5 50.3 25 -0.22 58 1.47 88.6 50 0.90 -13.1 4 -1.05 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -12.6 27 0.00 76 37.4 49.9 25 -0.22 58 1.47 88.6 50 0.90 -13.1 4 -1.05 78 37.2 49.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 76 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -12.6 27 0.60 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 0.00 -12.2 38 0.00 86 37.9 49.6 48 0.67 50 0.86 88.5 15 0.84 -12.7 17 -0.45													
54 36.6 48.4 6 -2.25 5 -1.84 85.0 5 -2.11 -11.8 52 0.90 55 37.6 49.1 31 0.00 11 -0.98 86.7 17 -0.67 -11.5 55 1.35 56 38.1 50.3 54 1.12 41 0.49 88.4 50 0.76 -12.2 38 0.30 57 38.0 51.0 50 0.90 55 1.35 89.0 56 1.26 -13.0 5 -0.90 58 37.5 50.1 25 -0.22 36 0.25 87.6 33 0.08 -12.6 22 -0.30 61 36.6 49.1 6 -2.25 11 -0.98 85.7 8 -1.52 -12.5 23 -0.15 63 37.7 49.8 35 0.22 29 -0.12 87.5 28 0.00 -12.1 41 0.45 66 37.8 49.8 43 0.45 29 -0.12 87.6 33 0.08 -12.0 43 0.60 67 37.3 49.3 18 -0.67 14 -0.74 86.6 16 -0.76 -12.0 43 0.60 68 37.5 51.1 25 -0.22 26 -0.25 87.2 22 -0.25 -12.2 36 0.30 69 37.5 51.1 25 -0.22 26 -0.25 87.2 22 -0.75 -12.2 36 0.30 71 37.2 50.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 50.3 25 -0.22 31 0.00 87.4 26 -0.08 -12.4 27 0.00 74 37.5 50.3 25 -0.22 31 0.00 87.4 26 -0.08 -12.4 27 0.00 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -12.4 27 0.00 76 37.4 49.9 21 -0.45 31 0.00 87.8 40 0.25 -12.8 15 -0.66 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.4 27 0.00 76 37.4 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.4 27 0.00 77 38.0 49.6 48 0.67 50 0.86 88.5 15 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 48.6 48 0.67 50 0.86 88.5 51 0.00 -1.17 -1.25 23 -0.15 78 37.2 49.3 15 -0.90 41 -0.74 88.5 15 -0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 48.6 48 0.67 50 0.86 88.5 51 0.00 -1.77 -													
55													
56													
57													
58													
60 37.7 50.3 35 0.22 41 0.49 88.0 43 0.42 -12.6 22 -0.30 61 36.6 49.1 6 -2.25 11 -0.98 85.7 8 -1.52 -12.5 23 -0.15 63 37.7 49.8 35 0.22 29 -0.12 87.5 28 0.00 -12.1 41 0.45 66 37.8 49.8 43 0.45 29 -0.12 87.6 33 0.08 -12.0 43 0.60 67 37.3 49.8 18 -0.67 14 -0.74 86.6 16 -0.76 -12.0 43 0.60 68 37.5 49.7 25 -0.22 26 -0.25 87.2 22 -0.25 -12.2 36 0.30 69 37.5 51.1 25 -0.22 58 1.47 88.6 52 0.93 -13.6 1 -1.80 71 37.2 50.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 49.9 25 -0.22 14 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 49.9 25 -0.22 14 0.49 87.8 40 0.25 -12.8 15 -0.60 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.4 49.3 15 -0.90 14 -0.74 86.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.4 85.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 88.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.5 28 0.00 -11.7 53 1.05 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.2 -11.9 9 -5.97 9 -0.75 99 38.0 50.4 49.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.2 -11.9 9 -5.97 9 -0.75 99 38.0 50.4 49.9 9 -0.90 53 1.23 88.2 -1.19 9 -5.97 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.2 -1.19 9 -5.97 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.2 -1.19 9 -5.97 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.2 -1.19 9 -5.97 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.2 -1.19 9 -5.97 9 -0.75 99 38.0 50.9 50 0.90 50 0.90 53 1.23 88.2 -1.19													
61 36.6 49.1 6 -2.25 11 -0.98 85.7 8 -1.52 -12.5 23 -0.15 63 37.7 49.8 35 0.22 29 -0.12 87.5 28 0.00 -12.1 41 0.45 66 37.8 49.8 43 0.45 29 -0.12 87.6 33 0.08 -12.0 43 0.60 67 37.3 49.3 18 -0.67 14 -0.74 86.6 16 -0.76 -12.0 43 0.60 68 37.5 49.7 25 -0.22 26 -0.25 87.2 22 -0.25 -12.2 36 0.30 69 37.5 51.1 25 -0.22 58 1.47 88.6 52 0.93 -13.6 1 -1.80 71 37.2 50.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 49.9 25 -0.22 31 0.00 87.4 26 -0.08 -12.4 27 0.00 74 37.5 50.3 25 -0.22 41 0.49 87.8 40 0.25 -12.8 15 -0.60 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 -0.17 -12.5 23 -0.15 80 37.9 49.9 35 0.22 31 0.00 87.6 33 0.08 -11.6 14 0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 49.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 86 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.9 49.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 88.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 88.3 17 -0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 88.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 99 38.0 50.9 50 0.90 53 1.23 88.2 9 55 1.18 -12.9 9 -0.75 99 90 38.0 50.9 50 0.90 50 0.90 53 1.23 88.2 9 55 1.18 -12.9 9 0.75 99 0.75 99 9													
63 37.7 49.8 35 0.22 29 -0.12 87.5 28 0.00 -12.1 41 0.45 66 37.8 49.8 43 0.45 29 -0.12 87.6 33 0.08 -12.0 43 0.60 67 37.3 49.3 18 -0.67 14 -0.74 86.6 16 -0.76 -12.0 43 0.60 68 37.5 49.7 25 -0.22 26 -0.25 87.2 22 -0.25 -12.2 36 0.30 69 37.5 51.1 25 -0.22 58 1.47 88.6 52 0.93 -13.6 1 -1.80 71 37.2 50.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 49.9 25 -0.22 31 0.00 87.4 26 -0.08 -12.4 27 0.00 74 37.5 50.3 25 -0.22 41 0.49 87.8 40 0.25 -12.8 15 -0.60 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 -0.17 -12.5 23 -0.15 78 37.2 49.3 15 -0.90 14 -0.74 86.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.8 37.5 28 0.00 -11.1 57 1.95 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 ###################################													
66 37.8 49.8 43 0.45 29 -0.12 87.6 33 0.08 -12.0 43 0.60 67 37.3 49.3 18 -0.67 14 -0.74 86.6 16 -0.76 -12.0 43 0.60 68 37.5 49.7 25 -0.22 26 -0.25 87.2 22 -0.25 -12.2 36 0.30 69 37.5 51.1 25 -0.22 58 1.47 88.6 52 0.93 -13.6 1 -1.80 71 37.2 50.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 49.9 25 -0.22 31 0.00 87.4 26 -0.08 -12.4 27 0.00 74 37.5 50.3 25 -0.22 41 0.49 87.8 40 0.25 -12.8 15 -0.60 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 -0.17 -12.5 23 -0.15 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 49.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 48.8 60 2.70 8 48.8 60 2.70 8 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 98 37.8 49.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.9 50 0.90 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 99 38.0 50.9 50 0.90 53 1.23 88.2 -11.9													
67 37.3 49.3 18 -0.67 14 -0.74 86.6 16 -0.76 -12.0 43 0.60 68 37.5 49.7 25 -0.22 26 -0.25 87.2 22 -0.25 -1.2.2 36 0.30 69 37.5 51.1 25 -0.22 58 1.47 88.6 52 0.93 -13.6 1 -1.80 71 37.2 50.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 49.9 25 -0.22 31 0.00 87.4 26 -0.08 -12.4 27 0.00 74 37.5 50.3 25 -0.22 41 0.49 87.8 40 0.25 -12.8 15 -0.60 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 -0.17 -12.5 23 -0.15 78 37.2 49.3 15 -0.90 14 -0.74 86.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.8 48.8 60 2.70 8 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.8 48.8 60 2.70 8 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 99 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 \$													
69 37.5 51.1 25 -0.22 58 1.47 88.6 52 0.93 -13.6 1 -1.80 71 37.2 50.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 49.9 25 -0.22 31 0.00 87.4 26 -0.08 -12.4 27 0.00 74 37.5 50.3 25 -0.22 41 0.49 87.8 40 0.25 -12.8 15 -0.60 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 -0.17 -12.5 23 -0.15 78 37.2 49.3 15 -0.90 14 -0.74 86.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 平均値(%) 37.5 49.7 -12.4 -12.4 -12.4 Q₃(46) 37.8 50.4 -12.4 -12.4 -12.4 Q₃(46) 37.8 50.4 -12.1 -12.9 -5.97 Q₁(16) 37.2 49.3 -12.4 -12.4 -12.4 Q₃(46) 37.8 50.4 -12.1 -12.4 -12.4 -12.4 Q₃(46) 37.8 50.4 -12.1 -12.4 -12.4 -12.4 Q₃(46) 37.8 50.4 -12.1 -12.4 -12.4 -12.4 Q₃(46) 37.8 50.4 -12.1 -12.4 -12.4 Q₃(46) 37.8 50.4 -12.4		37.3		18		14			16			43	
71 37.2 50.3 15 -0.90 41 0.49 87.5 28 0.00 -13.1 4 -1.05 72 37.5 49.9 25 -0.22 31 0.00 87.4 26 -0.08 -12.4 27 0.00 74 37.5 50.3 25 -0.22 41 0.49 87.8 40 0.25 -12.8 15 -0.60 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 -0.17 -12.5 23 -0.15 78 37.2 49.3 15 -0.90 14 -0.74 86.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -11.6 54 0.30 85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7	68	37.5	49.7	25	-0.22	26	-0.25	87.2	22	-0.25	-12.2	36	0.30
72 37.5 49.9 25 -0.22 31 0.00 87.4 26 -0.08 -12.4 27 0.00 74 37.5 50.3 25 -0.22 41 0.49 87.8 40 0.25 -12.8 15 -0.60 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 -0.17 -12.5 23 -0.15 78 37.2 49.3 15 -0.90 14 -0.74 86.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -11.6 54 1.20 85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 12.1 2.43 2.19 -5.97 2.11 2.43 2.19 -5.97 2.11 2.43 2.19 2.19 -5.97 2.11 2.43 2.24 2.34 2.34 2.34 2.19 2.19 -5.97 2.34 2.24 2.34 2.24 2.34 2.34 2.34 2.34	69	37.5	51.1	25	-0.22	58	1.47	88.6	52	0.93	-13.6	1	-1.80
74 37.5 50.3 25 -0.22 41 0.49 87.8 40 0.25 -12.8 15 -0.60 75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 -0.17 -12.5 23 -0.15 78 37.2 49.3 15 -0.90 14 -0.74 86.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7	71	37.2	50.3	15	-0.90	41	0.49	87.5	28		-13.1	4	-1.05
75 38.0 49.6 50 0.90 20 -0.37 87.6 33 0.08 -11.6 54 1.20 76 37.4 49.9 21 -0.45 31 0.00 87.3 24 -0.17 -12.5 23 -0.15 78 37.2 49.3 15 -0.90 14 -0.74 86.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 第 1.21													
76													
78 37.2 49.3 15 -0.90 14 -0.74 86.5 15 -0.84 -12.1 41 0.45 80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -13.5 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 87.2 87.2 -12.3 87.2 -12.3 88.6 -12.4 9.9 9.9 -12.4 9.9 -12.4 9.9 -12.4 9.9 -12.4 9.9 -12.4 9.9 9.9 -12.4 9.9 -12.4 9.9 -12.4 9.9 -12.4 9.9 -12.4 9.9 9.9 -12.4 9.9 9.9 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0													
80 37.9 50.6 48 0.67 50 0.86 88.5 51 0.84 -12.7 17 -0.45 81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7													
81 37.7 49.9 35 0.22 31 0.00 87.6 33 0.08 -12.2 38 0.30 85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 87.2 1.91 0.73 第7.2 49.3 2.19 -5.97 ② 「標準偏差(%) 0.79 1.21 1 2.43 2.19 2.19 -5.97 ② 「保護保護(%) 37.6 49.9 37.6 49.9 87.5 2.19 -7.24 2.19 -7.24 2.19 1.91 0.73 2.19 2.19 0.74 2.19 2.19 0.75 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19													
85 37.9 49.6 48 0.67 20 -0.37 87.5 28 0.00 -11.7 53 1.05 86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 87.2 -12.3													
86 37.0 49.7 13 -1.35 26 -0.25 86.7 17 -0.67 -12.7 17 -0.45 87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 87.2 -12.3													
87 38.3 51.3 58 1.57 60 1.72 89.6 60 1.77 -13.0 5 -0.90 93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 87.2 -12.3 標準偏差(%) 0.79 1.21 1.91 0.73 変動係数(%) 2.11 2.43 2.19 -5.97 Q₁(16) 37.2 49.3 86.6 -12.8 Q₂(31) 37.6 49.9 87.5 -12.4 Q₃(46) 37.8 50.4 IQR=Q₃-Q₁ 0.6 1.1 1.1 1.60 0.99													
93 38.8 48.8 60 2.70 8 -1.35 87.6 33 0.08 -10.0 60 3.60 97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 87.2 -12.3													
97 37.8 50.5 43 0.45 47 0.74 88.3 47 0.67 -12.7 17 -0.45 98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 87.2 -12.3													
98 37.6 48.7 31 0.00 7 -1.47 86.3 13 -1.01 -11.1 57 1.95 99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 87.2 -12.3 -12.4 -12.9 -12.9 -12.4 -12.8 -12.4 -12.8 -12.4 -12.8 -12.4 -12.8 -12.4 -12.8 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4													
99 38.0 50.9 50 0.90 53 1.23 88.9 55 1.18 -12.9 9 -0.75 平均値(%) 37.5 49.7 87.2 -12.3 -12.3 標準偏差(%) 0.79 1.21 1.91 0.73 -5.97 変動係数(%) 2.11 2.43 2.19 -5.97 Q ₁ (16) 37.2 49.3 86.6 -12.8 Q ₂ (31) 37.6 49.9 87.5 -12.4 Q ₃ (46) 37.8 50.4 88.2 -11.9 IQR=Q ₃ -Q ₁ 0.6 1.1 1.60 0.9													
平均値(%) 37.5 49.7 87.2 -12.3 標準偏差(%) 0.79 1.21 1.91 0.73 変動係数(%) 2.11 2.43 2.19 -5.97 Q ₁ (16) 37.2 49.3 86.6 -12.8 Q ₂ (31) 37.6 49.9 87.5 -12.4 Q ₃ (46) 37.8 50.4 88.2 -11.9 IQR=Q ₃ -Q ₁ 0.6 1.1 1.60 0.9													
標準偏差(%) 0.79 1.21 1.91 0.73 2.19 2.19 -5.97 2.19 $Q_1(16)$ 37.2 49.3 86.6 -12.8 $Q_2(31)$ 37.6 49.9 87.5 -12.4 $Q_3(46)$ 37.8 50.4 88.2 -11.9 $IQR = Q_3 - Q_1$ 0.6 1.1 1.60 0.9													
変動係数 (%) 2.11 2.43 2.19 -5.97 $Q_1(16)$ 37.2 49.3 86.6 -12.8 $Q_2(31)$ 37.6 49.9 87.5 -12.4 $Q_3(46)$ 37.8 50.4 88.2 -11.9 $IQR = Q_3 - Q_1$ 0.6 1.1 1.60 0.9													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$Q_2(31)$ 37.6 49.9 87.5 -12.4 $Q_3(46)$ 37.8 50.4 88.2 -11.9 $IQR = Q_3 - Q_1$ 0.6 1.1 1.60 0.9													
$Q_3(46)$ 37.8 50.4 88.2 -11.9 $IQR = Q_3 - Q_1$ 0.6 1.1 1.60 0.9	$Q_1(16)$	37.2	49.3					86.6			-12.8		
<i>IQR</i> = <i>Q</i> ₃ - <i>Q</i> ₁ 0.6 1.1 1.60 0.9	$Q_2(31)$	37.6	49.9					87.5			-12.4		
<i>IQR</i> = <i>Q</i> ₃ - <i>Q</i> ₁ 0.6 1.1 1.60 0.9	Q ₃ (46)	37.8	50.4					88.2			-11.9		
 													
_0 = 1,19													
$v_1 = (\sigma_1/Q_2) \times 100$ 1.18 1.63 1.36 -5.38	$v_1 = (\sigma_1/Q_2) \times 100$	1.18	1.63					1.36			-5.38		

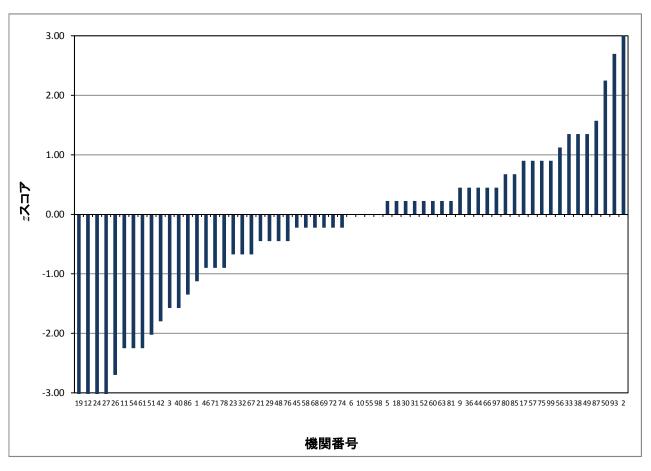


図 5.9 含水比(A試料)のzスコア

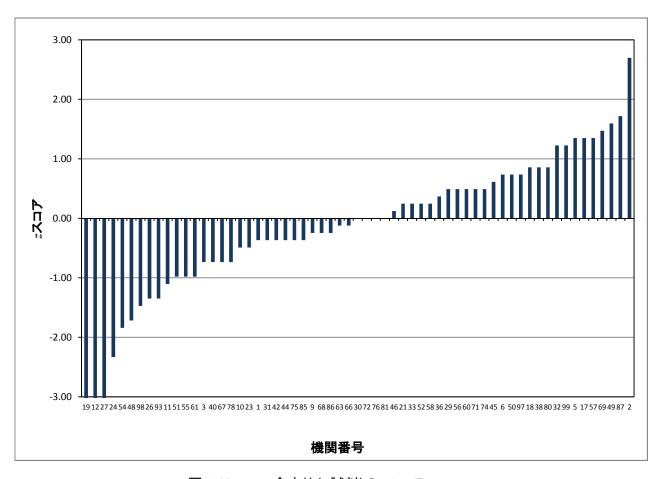


図 5.10 含水比(K試料)のzスコア

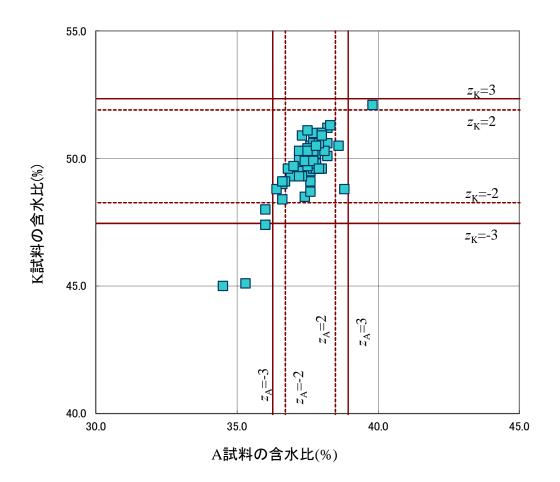


図 5.11 散布図による評価 (含水比)

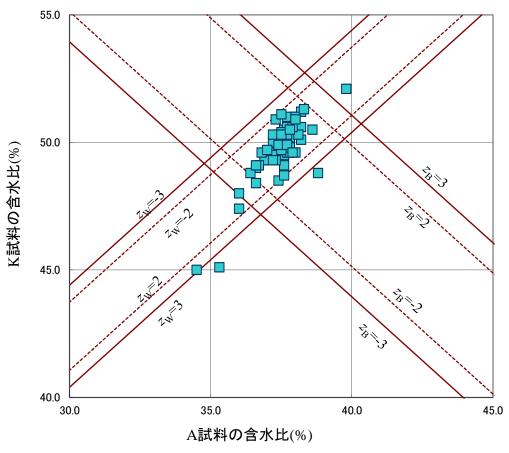
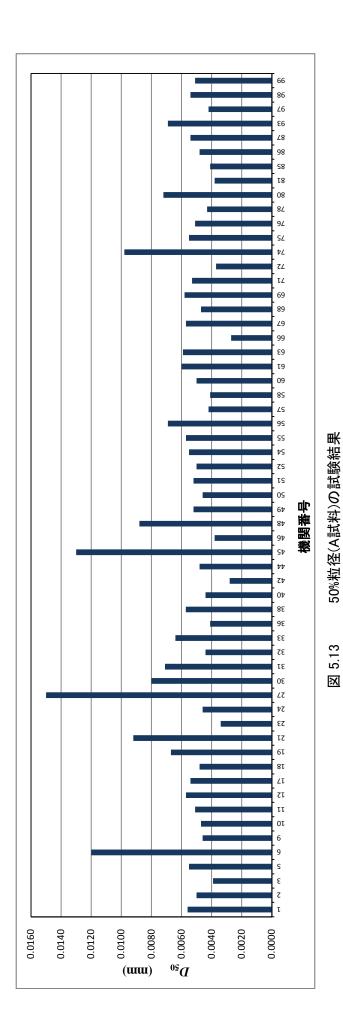



図 5.12 z_B , z_W による評価(含水比)

58 18 09 85 ۷S 99 SS 75 25 τς 機関番号 05 61⁄2 817 St ヤヤ 77 **0**1⁄ 98 33 35 τε 30 77 77 52 77 6T 18 ۷ī 75 ττ D₅₀ 0.0040 (mm) 0.0030 0.0010 0.0000 0.0060 0.0050

図 5.14 50%粒径(K試料)の試験結果

表 5.4 50% 粒径の測定値とそのzスコア

試験	測定位	直(mm)	A試料の		K試料の		計略格	と関間の2		計略格	と と関内の2	スコア
機関名	A試料	K試料	順位	ZA	順位	z _K	A+K	順位	z _B	A-K	順位	z _W
1	へ の 0.0056	*	39	0.40	*	*	*	*	*	*	*	*
2	0.0050	0.0026	24	-0.20	25	0.00	0.0076	24	-0.12	0.0024	26	-0.22
3	0.0039	0.0023	7	-1.30	16	-0.37	0.0062	7	-0.98	0.0016	10	-1.12
5	0.0055	0.0033	36	0.30	43	0.86	0.0088	39	0.61	0.0022	20	-0.45
6	0.0120	0.0020	57	6.79	6	-0.74	0.0140	54	3.80	0.0100	55	8.32
9	0.0046	0.0022	16	-0.60	13	-0.49	0.0068	12	-0.61	0.0024	25	-0.22
10 11	0.0047 0.0051	0.0027 0.0018	19 27	-0.50 -0.10	32 3	0.12 -0.98	0.0074 0.0069	20 14	-0.25 -0.55	0.0020 0.0033	13 45	-0.67 0.79
12	0.0057	0.0018	40	0.50	39	0.37	0.0003	37	0.49	0.0033	36	0.73
17	0.0054	0.0028	33	0.20	37	0.25	0.0082	34	0.25	0.0026	30	0.00
18	0.0048	0.0025	21	-0.40	22	-0.12	0.0073	18	-0.31	0.0023	23	-0.34
19	0.0067	0.0026	48	1.50	25	0.00	0.0093	44	0.92	0.0041	49	1.69
21	0.0092	0.0048	55	4.00	56	2.70	0.0140	53	3.80	0.0044	50	2.02
23	0.0034	0.0022	3	-1.80	13	-0.49	0.0056	4	-1.35	0.0012	5	-1.57
24 27	0.0046 0.0150	0.0035 0.0036	16 59	-0.60 9.79	50 52	1.10 1.23	0.0081 0.0186	30 57	0.18 6.62	0.0011 0.0114	3 57	-1.69 9.89
30	0.0080	0.0030	53	2.80	32	0.12	0.0107	50	1.78	0.0053	53	3.04
31	0.0071	0.0020	51	1.90	6	-0.74	0.0091	43	0.80	0.0051	52	2.81
32	0.0044	0.0024	14	-0.80	19	-0.25	0.0068	12	-0.61	0.0020	15	-0.67
33	0.0064	0.0029	47	1.20	39	0.37	0.0093	44	0.92	0.0035	47	1.01
36	0.0041	0.0019	8	-1.10	5	-0.86	0.0060	6	-1.10	0.0022	22	-0.45
38 40	0.0057 0.0044	0.0034 0.0020	43 14	0.51 -0.80	45 6	0.93 -0.74	0.0091 0.0064	42	0.78 -0.86	0.0024 0.0024	24 26	-0.28 -0.22
40	0.0044	0.0020	2	-0.80 -2.40	10	-0.74 -0.61	0.0064	10 2	-0.86 -1.78	0.0024	26 1	-0.22 -2.14
44	0.0028	0.0021	21	-0.40	13	-0.49	0.0049	16	-0.49	0.0007	29	0.00
45	0.0130	0.0026	58	7.79	25	0.00	0.0156	56	4.78	0.0104	56	8.77
46	0.0038	*	5	-1.40	*	*	*	*	*	*	*	*
48	0.0088	0.0020	54	3.60	6	-0.74	0.0108	51	1.84	0.0068	54	4.72
49	0.0052	0.0024	30	0.00	19	-0.25	0.0076	23	-0.12	0.0028	35	0.22
50 51	0.0046 0.0052	0.0026 0.0023	16 30	-0.60 0.00	25 16	0.00 -0.37	0.0072 0.0075	17 21	-0.37 -0.18	0.0020 0.0029	13 38	-0.67 0.34
52	0.0052	0.0023	24	-0.20	37	0.25	0.0073	27	0.00	0.0029	21	-0.45
54	0.0055	0.0026	36	0.30	25	0.00	0.0081	30	0.18	0.0029	38	0.34
55	0.0057	0.0029	40	0.50	39	0.37	0.0086	37	0.49	0.0028	36	0.22
56	0.0069	0.0036	49	1.70	52	1.23	0.0105	49	1.66	0.0033	44	0.79
57	0.0042	0.0015	11	-1.00	1	-1.35	0.0057	5	-1.29	0.0027	33	0.11
58	0.0041	0.0034	8	-1.10	46	0.98	0.0075	21	-0.18	0.0007	2	-2.14
60 61	0.0050 0.0060	0.0035 0.0034	24 46	-0.20 0.80	50 46	1.10 0.98	0.0085 0.0094	36 46	0.43 0.98	0.0015 0.0026	9 30	-1.24 0.00
63	0.0059	0.0034	45	0.70	42	0.49	0.0094	41	0.98	0.0020	38	0.34
66	0.0027	0.0015	1	-2.50	1	-1.35	0.0042	1	-2.21	0.0012	6	-1.57
67	0.0057	0.0025	40	0.50	22	-0.12	0.0082	34	0.25	0.0032	43	0.67
68	0.0047	0.0026	19	-0.50	25	0.00	0.0073	19	-0.31	0.0021	19	-0.56
69	0.0058	0.0044	44	0.60	55	2.21	0.0102	47	1.47	0.0014	7	-1.35
71	0.0053	0.0024	32	0.10	19	-0.25	0.0077	26	-0.06	0.0029	41	0.34
72	0.0037	0.0018	4	-1.50 4.60	3	-0.98 3.07	0.0055	3	-1.41 4.35	0.0019 0.0047	12	-0.79 2.36
74 75	0.0098 0.0055	0.0051 0.0023	56 36	0.30	57 16	-0.37	0.0149 0.0078	55 27	0.00	0.0047	51 42	0.67
76	0.0051	0.0025	27	-0.10	22	-0.12	0.0076	25	-0.12	0.0032	30	0.00
78	0.0043	0.0026	13	-0.90	25	0.00	0.0069	14	-0.55	0.0017	11	-1.01
80	0.0072	0.0036	52	2.00	52	1.23	0.0108	51	1.84	0.0036	48	1.12
81	0.0038	0.0027	5	-1.40	32	0.12	0.0065	11	-0.80	0.0011	3	-1.69
85	0.0041	0.0021	8	-1.10	10	-0.61	0.0062	8	-0.98	0.0020	15	-0.67
86 87	0.0048 0.0054	0.0033 0.0034	21 33	-0.40 0.20	43 46	0.86 0.98	0.0081	30 40	0.18 0.61	0.0015 0.0020	8 15	-1.24 -0.67
93	0.0054	0.0034	49	1.70	46	0.98	0.0088	48	1.53	0.0020	46	1.01
97	0.0042	0.0021	11	-1.00	10	-0.61	0.0063	9	-0.92	0.0031	18	-0.56
98	0.0054	0.0027	33	0.20	32	0.12	0.0081	30	0.18	0.0027	34	0.11
99	0.0051	0.0027	27	-0.10	32	0.12	0.0078	29	0.00	0.0024	26	-0.22
平均値(mm)	0.0057	0.0027					0.0085			0.0030		
標準偏差(mm)	0.00227	0.00073					0.00266			0.00213		
<u>変動係数 (%)</u> <i>Q</i> ₁ (15.5)	39.7 0.0045	26.8 0.0022					31.3 0.0069			70.4 0.0020		
$Q_1(13.3)$ $Q_2(30)$	0.0045	0.0022					0.0009			0.0026		
	0.0052	0.0020										
$Q_{3}(44.5)$							0.0091			0.0032		
$IQR = Q_3 - Q_1$	0.0014	0.0011					0.0022			0.0012		
$\sigma_1 = IQR \times 0.7413$	0.00100	0.00082					0.00163			0.00089		
$v_1 = (\sigma_1/Q_2) \times 100$	19.2	31.4		i	Ī		20.9			34.2		

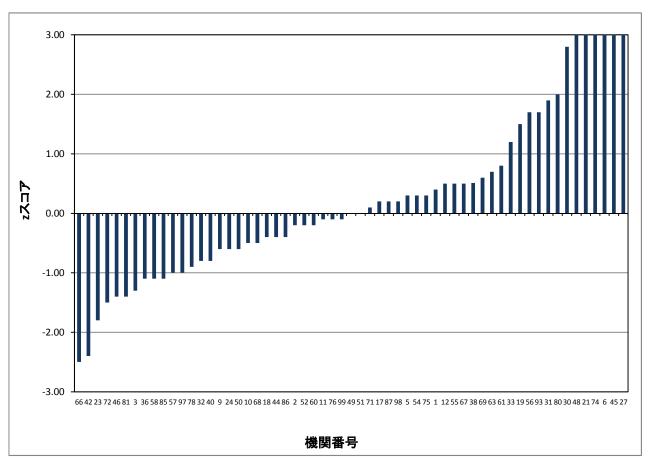


図 5.15 50%粒径(A試料)のzスコア

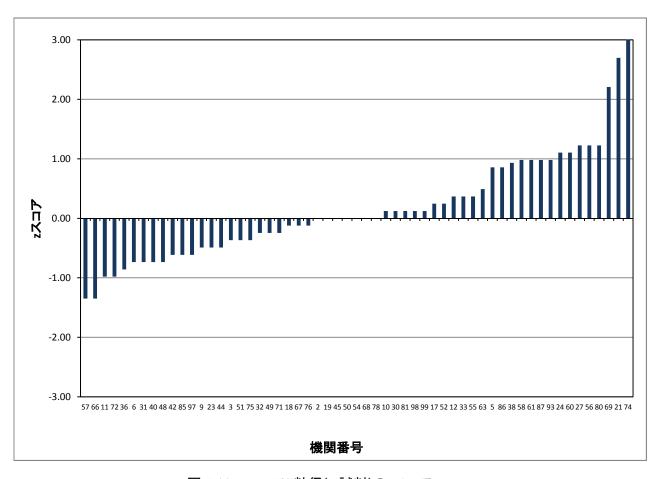


図 5.16 50%粒径(K試料)のzスコア

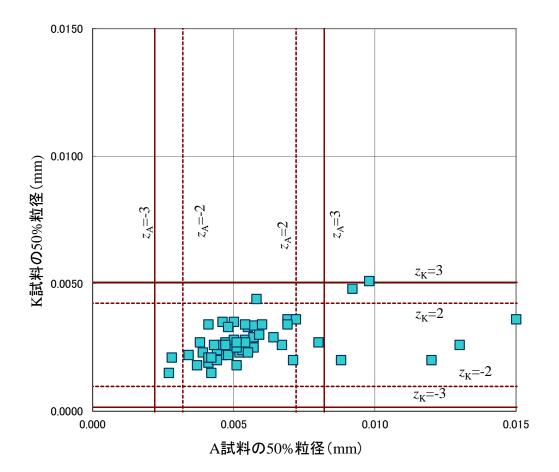


図 5.17 散布図による評価 (50%粒径)

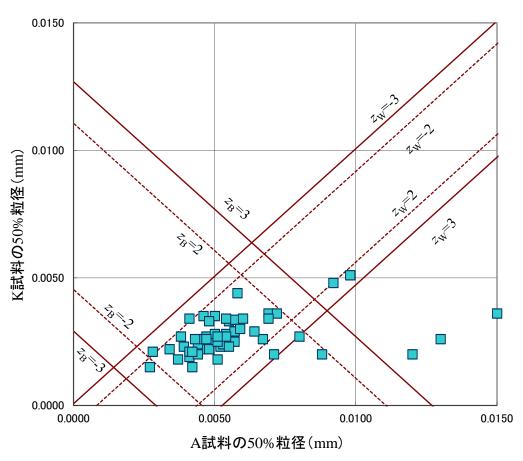


図 5.18 z_B , z_W による評価(50%粒径)

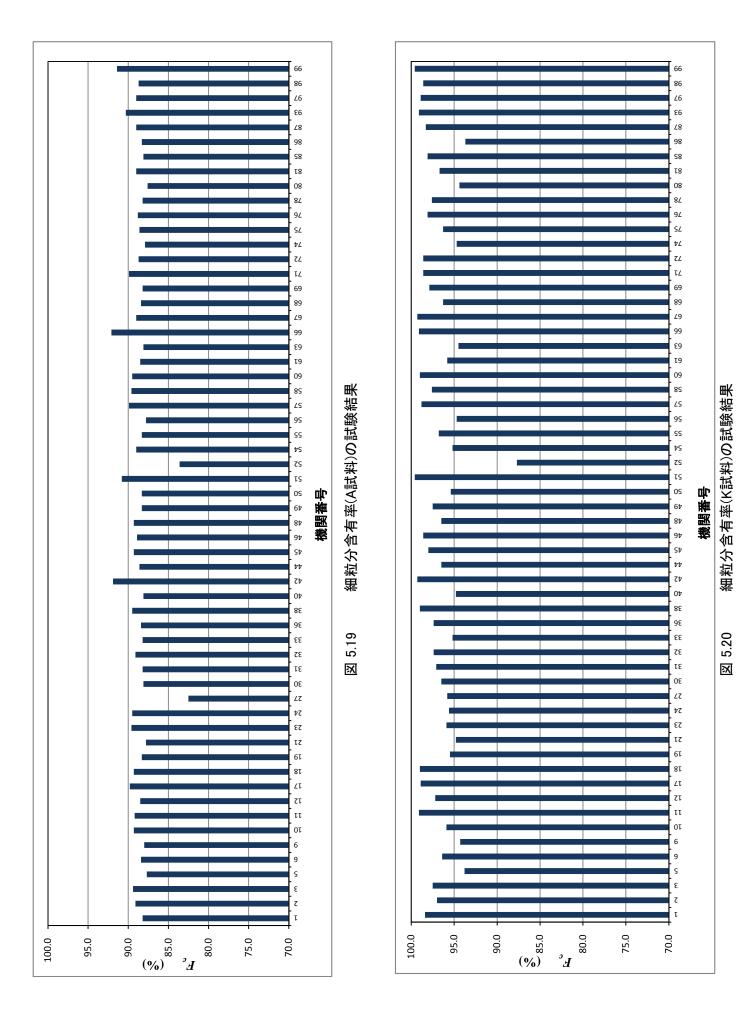


表 5.5 細粒分含有率の測定値とそのzスコア

試験	测宁	值(%)	及 3.3 A試料σ		L I I I	シフタリス		銭関間の2		計除故	銭関内の2	フコア
機関名	A試料	E(%) K試料	順位	$z_{\rm A}$	順位	$z_{\rm K}$	A+K	順位	z _B	A-K	順位	z _W
1	88.2	98.4	13	-0.61	42	0.56	186.6	37	0.34	-10.2	3	-1.17
2	89.1	97.0	39	0.49	28	-0.09	186.1	33	0.13	-7.9	34	0.18
3	89.4	97.5	46	0.86	33	0.14	186.9	39	0.47	-8.1	31	0.06
5	87.7	93.8	4	-1.23	3	-1.58	181.5	3	-1.84	-6.1	56	1.23
6	88.4	96.4	23	-0.37	22	-0.37	184.8	19	-0.43	-8.0	32	0.12
9 10	88.0 89.3	94.3 95.9	8 42	-0.86 0.74	4 18	-1.35 -0.60	182.3 185.2	6 24	-1.50 -0.26	-6.3 -6.6	54 51	1.11 0.94
11	89.3	95.9	42	0.74	53	0.88	185.2	47	1.07	-6.6 -9.9	6	-1.00
12	88.5	97.2	26	-0.25	30	0.00	185.7	27	-0.04	-8.7	24	-0.29
17	89.8	98.9	52	1.35	48	0.79	188.7	53	1.24	-9.1	18	-0.53
18	89.3	99.0	42	0.74	50	0.84	188.3	47	1.07	-9.7	9	-0.88
19	88.3	95.5	18	-0.49	14	-0.79	183.8	14	-0.86	-7.2	41	0.59
21	87.8	94.8	5	-1.10	9	-1.12	182.6	8	-1.37	-7.0	44	0.70
23 24	89.6 89.5	95.9 95.6	50 47	1.10 0.98	18 15	-0.60 -0.74	185.5 185.1	26 21	-0.13 -0.30	-6.3 -6.1	53 56	1.11 1.23
27	82.5	95.8	1	-7.60	16	-0.74	178.3	2	-3.21	-13.3	1	-2.99
30	88.1	96.5	9	-0.74	23	-0.33	184.6	17	-0.51	-8.4	28	-0.12
31	88.2	97.1	13	-0.61	29	-0.05	185.3	25	-0.21	-8.9	20	-0.41
32	89.1	97.4	39	0.49	31	0.09	186.5	36	0.30	-8.3	29	-0.06
33	88.2	95.2	13	-0.61	11	-0.93	183.4	12	-1.03	-7.0	44	0.70
36	88.4	97.4	23	-0.37	31	0.09	185.8	29	0.00	-9.0	19	-0.47
38	89.5	99.0	47	0.98	50	0.84	188.5	50	1.16	-9.5	12	-0.76
40	88.1	94.8	9	-0.74	9	-1.12	182.9	11	-1.24	-6.7	50	0.88
42 44	91.9 88.6	99.3 96.5	58 28	3.92 -0.12	56 23	0.98 -0.33	191.2 185.1	58 21	2.31 -0.30	-7.4 -7.9	39 34	0.47 0.18
45	89.3	98.0	42	0.74	38	0.37	187.3	41	0.64	-8.7	24	-0.29
46	88.9	98.6	33	0.25	43	0.65	187.5	45	0.73	-9.7	11	-0.88
48	89.3	96.5	42	0.74	23	-0.33	185.8	29	0.00	-7.2	41	0.59
49	88.3	97.5	18	-0.49	33	0.14	185.8	29	0.00	-9.2	17	-0.59
50	88.3	95.4	18	-0.49	13	-0.84	183.7	13	-0.90	-7.1	43	0.65
51	90.8	99.6	56	2.58	58	1.12	190.4	56	1.97	-8.8	22	-0.35
52 54	83.6 89.0	87.7 95.2	2 34	-6.25 0.37	11	-4.42 -0.93	171.3 184.2	1 15	-6.21 -0.69	-4.1 -6.2	59 55	2.40 1.17
55	88.3	96.8	18	-0.49	27	-0.93	185.1	21	-0.89	-6.2 -8.5	27	-0.18
56	87.8	94.7	5	-1.10	7	-1.16	182.5	7	-1.41	-6.9	47	0.76
57	89.9	98.8	53	1.47	47	0.74	188.7	53	1.24	-8.9	20	-0.41
58	89.6	97.6	50	1.10	35	0.19	187.2	40	0.60	-8.0	32	0.12
60	89.5	99.0	47	0.98	50	0.84	188.5	50	1.16	-9.5	12	-0.76
61	88.5	95.8	26	-0.25	16	-0.65	184.3	16	-0.64	-7.3	40	0.53
63	88.1	94.5	9	-0.74	6	-1.26	182.6	8	-1.37	-6.4	52	1.06
66 67	92.1 89.0	99.1 99.3	59 34	4.17 0.37	53 56	0.88	191.2 188.3	58 47	2.31 1.07	-7.0 -10.3	44 2	0.70 -1.23
68	88.4	96.3	23	-0.37	20	-0.42	184.7	18	-0.47	-7.9	36	0.18
69	88.2	97.9	13	-0.61	37	0.33	186.1	34	0.13	-9.7	9	-0.88
71	89.9	98.6	53	1.47	43	0.65	188.5	50	1.16	-8.7	26	-0.29
72	88.7	98.6	30	0.00	43	0.65	187.3	41	0.64	-9.9	6	-1.00
74	87.9	94.7	7	-0.98	7	-1.16	182.6	10	-1.37	-6.8	49	0.82
75	88.6	96.3	28	-0.12	20	-0.42	184.9	20	-0.39	-7.7	37	0.29
76 78	88.8	98.1	32	0.12	39	0.42	186.9	38	0.47	-9.3 -0.4	15	-0.65 -0.70
78 80	88.2 87.6	97.6 94.4	13 3	-0.61 -1.35	35 5	0.19 -1.30	185.8 182.0	29 4	0.00 -1.63	-9.4 -6.8	14 48	-0.70 0.82
81	89.0	94.4	34	0.37	26	-0.23	185.7	27	-0.04	-0.8 -7.7	37	0.82
85	88.1	98.1	9	-0.74	39	0.42	186.2	35	0.17	-10.0	4	-1.06
86	88.3	93.7	18	-0.49	2	-1.63	182.0	4	-1.63	-5.4	58	1.64
87	89.0	98.3	34	0.37	41	0.51	187.3	41	0.64	-9.3	15	-0.65
93	90.3	99.1	55	1.96	53	0.88	189.4	55	1.54	-8.8	22	-0.35
97	89.0	98.9	34	0.37	48	0.79	187.9	46	0.90	-9.9	5	-1.00
98	88.7	98.6	30	0.00	43	0.65	187.3	41	0.64	-9.9 -9.2	6	-1.00
99 平均値(%)	91.4 88.7	99.6 96.9	57	3.31	58	1.12	191.0 185.6	57	2.23	-8.2 -8.2	30	0.00
<u>平均順(%)</u> 標準偏差(%)	1.44	2.07					3.21			1.53		
変動係数(%)	1.62	2.13					1.73			-18.7		
$Q_1(15.5)$	88.2	95.7					184.3			-9.3		
			<u> </u>									
$Q_2(30)$	88.7	97.2					185.8			-8.2		
$Q_{3}(44.5)$	89.3	98.6					187.4			-7.0		
$IQR = Q_3 - Q_1$	1.1	2.9					3.2			2.3		
$\sigma_1 = IQR \times 0.7413$	0.82	2.15					2.34			1.70		
$v_1 = (\sigma_1/Q_2) \times 100$	0.92	2.21					1.26			-20.8		
- "												

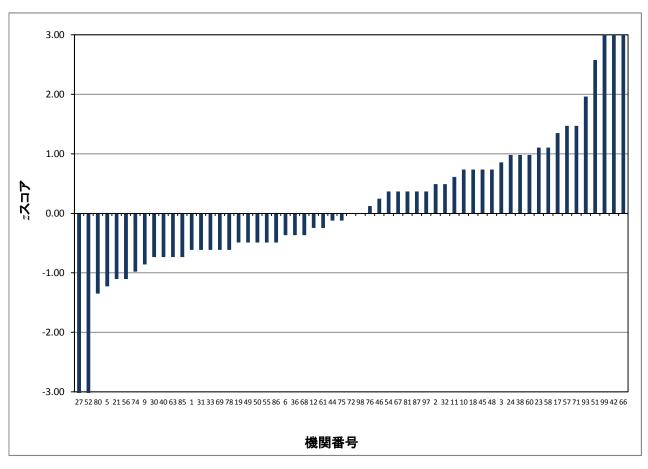


図 5.21 細粒分含有率(A試料)のzスコア

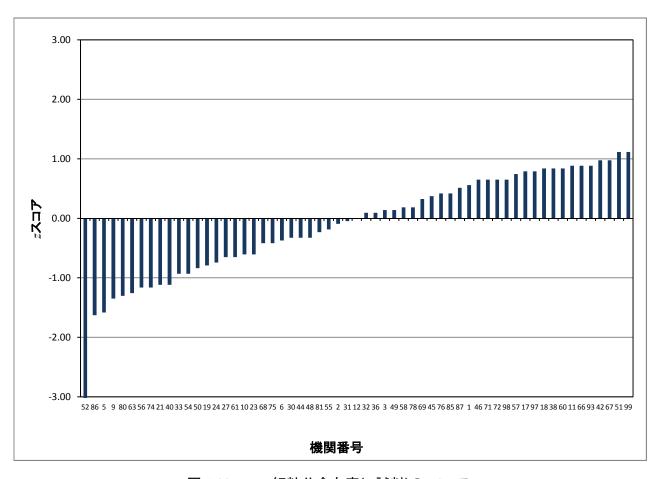


図 5.22 細粒分含有率(K試料)のzスコア

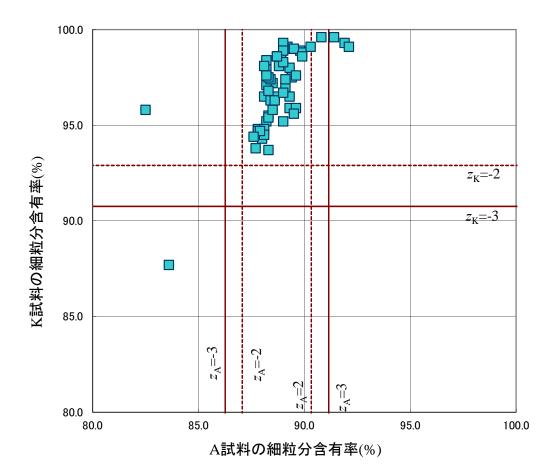


図 5.23 散布図による評価 (細粒分含有率)

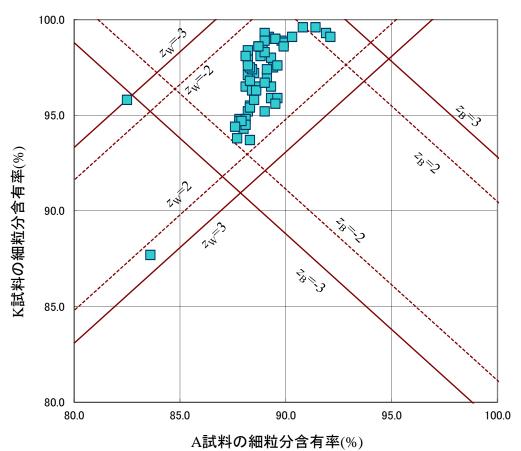
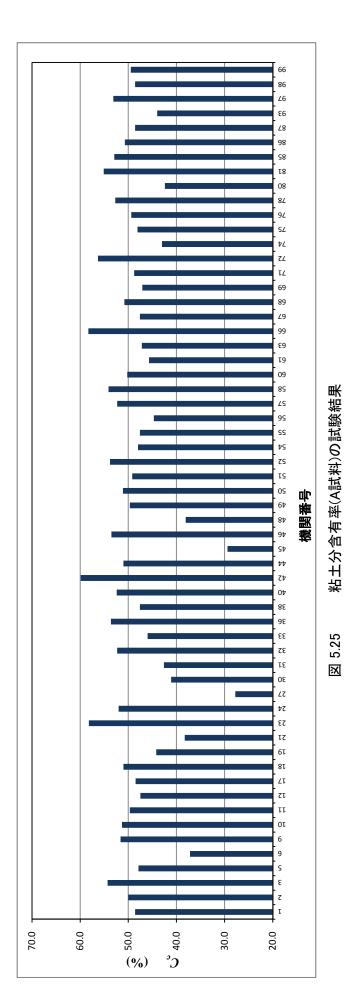



図 5.24 z_B, z_Wによる評価(細粒分含有率)

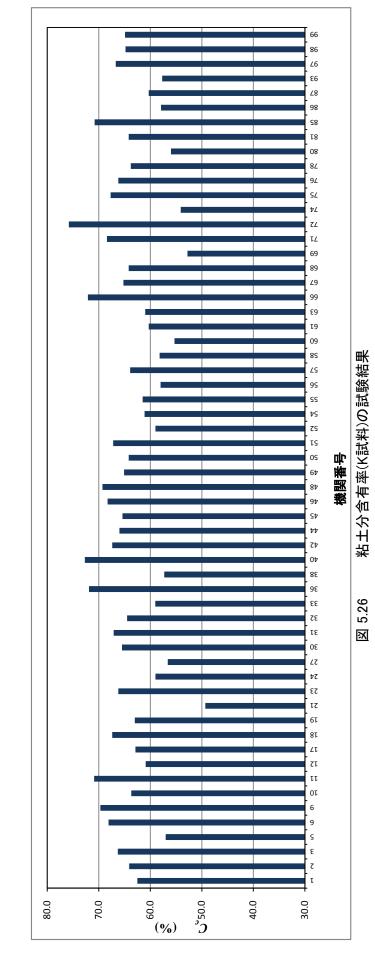


表 5.6 粘土分含有率の測定値とそのzスコア

機関名 A試料 K試料 順位 z_A 順位 z_K A+K 順位 z_B A-K 1 48.6 62.5 25 -0.21 22 -0.31 111.1 26 -0.22 -13.9 2 50.0 64.1 34 0.16 28 -0.02 114.1 32 0.17 -14.1 3 54.3 66.3 54 1.28 42 0.38 120.6 49 1.03 -12.0 5 47.9 57.0 21 -0.39 7 -1.30 104.9 9 -1.04 -9.1 6 37.2 68.1 3 -3.20 49 0.70 105.3 12 -0.99 -30.9 9 51.6 69.7 42 0.58 53 0.99 121.3 51 1.12 -18.1 10 51.3 63.7 41 0.50 25 -0.09 115.0 35 0.29 -12.4 11 49.7 70.9 32 0.08 55 1.21 120.6 50 1.03 -21.2	機関内の2 順位 28 27 43 50 3 14 41 7	Z _W -0.02 -0.06 0.39 1.01 -3.66 -0.92
1 48.6 62.5 25 -0.21 22 -0.31 111.1 26 -0.22 -13.9 2 50.0 64.1 34 0.16 28 -0.02 114.1 32 0.17 -14.1 3 54.3 66.3 54 1.28 42 0.38 120.6 49 1.03 -12.0 5 47.9 57.0 21 -0.39 7 -1.30 104.9 9 -1.04 -9.1 6 37.2 68.1 3 -3.20 49 0.70 105.3 12 -0.99 -30.9 9 51.6 69.7 42 0.58 53 0.99 121.3 51 1.12 -18.1 10 51.3 63.7 41 0.50 25 -0.09 115.0 35 0.29 -12.4 11 49.7 70.9 32 0.08 55 1.21 120.6 50 1.03 -21.2	28 27 43 50 3 14 41 7	-0.02 -0.06 0.39 1.01 -3.66
3 54.3 66.3 54 1.28 42 0.38 120.6 49 1.03 -12.0 5 47.9 57.0 21 -0.39 7 -1.30 104.9 9 -1.04 -9.1 6 37.2 68.1 3 -3.20 49 0.70 105.3 12 -0.99 -30.9 9 51.6 69.7 42 0.58 53 0.99 121.3 51 1.12 -18.1 10 51.3 63.7 41 0.50 25 -0.09 115.0 35 0.29 -12.4 11 49.7 70.9 32 0.08 55 1.21 120.6 50 1.03 -21.2	43 50 3 14 41 7	0.39 1.01 -3.66
5 47.9 57.0 21 -0.39 7 -1.30 104.9 9 -1.04 -9.1 6 37.2 68.1 3 -3.20 49 0.70 105.3 12 -0.99 -30.9 9 51.6 69.7 42 0.58 53 0.99 121.3 51 1.12 -18.1 10 51.3 63.7 41 0.50 25 -0.09 115.0 35 0.29 -12.4 11 49.7 70.9 32 0.08 55 1.21 120.6 50 1.03 -21.2	50 3 14 41 7	1.01 -3.66
6 37.2 68.1 3 -3.20 49 0.70 105.3 12 -0.99 -30.9 9 51.6 69.7 42 0.58 53 0.99 121.3 51 1.12 -18.1 10 51.3 63.7 41 0.50 25 -0.09 115.0 35 0.29 -12.4 11 49.7 70.9 32 0.08 55 1.21 120.6 50 1.03 -21.2	3 14 41 7	-3.66
9 51.6 69.7 42 0.58 53 0.99 121.3 51 1.12 -18.1 10 51.3 63.7 41 0.50 25 -0.09 115.0 35 0.29 -12.4 11 49.7 70.9 32 0.08 55 1.21 120.6 50 1.03 -21.2	14 41 7	
11 49.7 70.9 32 0.08 55 1.21 120.6 50 1.03 -21.2	7	
		0.30
		-1.58
12 47.5 60.9 17 -0.50 18 -0.59 108.4 19 -0.58 -13.4 17 48.5 62.9 24 -0.24 23 -0.23 111.4 27 -0.19 -14.4	36 26	0.09 -0.13
18 51.0 67.4 38 0.42 46 0.58 118.4 46 0.74 -16.4	19	-0.56
19 44.2 63.0 11 -1.36 24 -0.22 107.2 16 -0.74 -18.8	12	-1.07
21 38.3 49.3 5 -2.91 1 -2.69 87.6 2 -3.33 -11.0	48	0.60
23 58.2 66.2 57 2.31 40 0.36 124.4 54 1.53 -8.0 24 52.0 59.0 43 0.68 13 -0.94 111.0 25 -0.24 -7.0	52 55	1.24 1.46
27 27.8 56.6 1 -5.66 6 -1.37 84.4 1 -3.76 -28.8	4	-3.21
30 41.1 65.5 6 -2.17 38 0.23 106.6 15 -0.82 -24.4	6	-2.27
31 42.6 67.1 8 -1.78 44 0.52 109.7 24 -0.41 -24.5	5	-2.29
32 52.3 64.5 44 0.76 32 0.05 116.8 43 0.53 -12.2 33 46.0 59.0 14 -0.89 15 -0.93 105.0 11 -1.03 -13.0	42 40	0.34 0.16
36 53.6 71.9 51 1.10 56 1.39 125.5 56 1.68 -18.3	13	-0.96
38 47.6 57.3 18 -0.47 8 -1.24 104.9 9 -1.04 -9.7	49	0.88
40 52.4 72.7 46 0.79 58 1.53 125.1 55 1.63 -20.3	8	-1.39
42 59.9 67.4 59 2.75 46 0.58 127.3 57 1.92 -7.5 44 51.0 66.0 38 0.42 39 0.32 117.0 44 0.56 -15.0	53 23	1.35
44 51.0 66.0 38 0.42 39 0.32 117.0 44 0.56 -15.0 45 29.4 65.4 2 -5.24 37 0.22 94.8 3 -2.38 -36.0	1	-0.26 -4.75
46 53.5 68.3 50 1.07 50 0.74 121.8 52 1.19 -14.8	24	-0.21
48 38.1 69.3 4 -2.96 52 0.92 107.4 17 -0.71 -31.2	2	-3.73
49 49.7 65.1 32 0.08 35 0.16 114.8 34 0.26 -15.4	22	-0.34
50 51.1 64.2 40 0.45 29 0.00 115.3 37 0.33 -13.1 51 49.2 67.2 29 -0.05 45 0.54 116.4 41 0.48 -18.0	38 15	0.15 -0.90
52 53.8 59.0 52 1.15 13 -0.94 112.8 29 0.00 -5.2	57	1.84
54 48.0 61.1 22 -0.37 20 -0.56 109.1 22 -0.49 -13.1	38	0.15
55 47.6 61.5 18 -0.47 21 -0.49 109.1 22 -0.49 -13.9	28	-0.02
56 44.7 58.0 12 -1.23 11 -1.12 102.7 8 -1.34 -13.3 57 52.3 63.9 44 0.76 27 -0.05 116.2 40 0.45 -11.6	37	0.11
57 52.3 63.9 44 0.76 27 -0.05 116.2 40 0.45 -11.6 58 54.1 58.2 53 1.23 12 -1.08 112.3 28 -0.07 -4.1	45 59	0.47 2.08
60 50.2 55.3 35 0.21 4 -1.60 105.5 13 -0.97 -5.1	58	1.86
61 45.7 60.3 13 -0.97 16 -0.70 106.0 14 -0.90 -14.6	25	-0.17
63 47.2 61.0 16 -0.58 19 -0.58 108.2 18 -0.61 -13.8	30	0.00
66 58.3 72.1 58 2.33 57 1.42 130.4 58 2.33 -13.8 67 47.6 65.2 18 -0.47 36 0.18 112.8 30 0.00 -17.6	30 17	0.00 -0.81
68 50.8 64.2 37 0.37 29 0.00 115.0 35 0.29 -13.4	35	0.09
69 47.1 52.8 15 -0.60 2 -2.05 99.9 6 -1.71 -5.7	56	1.73
71 48.8 68.4 28 -0.16 51 0.76 117.2 45 0.58 -19.6	9	-1.24
72 56.3 75.8 56 1.81 59 2.09 132.1 59 2.55 -19.5 74 43.0 54.1 9 -1.68 3 -1.82 97.1 4 -2.08 -11.1	11 46	-1.22 0.58
75 48.1 67.7 23 -0.34 48 0.63 115.8 39 0.40 -19.6	10	-1.24
76 49.4 66.2 30 0.00 40 0.36 115.6 38 0.37 -16.8	18	-0.64
78 52.7 63.8 47 0.86 26 -0.07 116.5 42 0.49 -11.1	47	0.58
80 42.4 56.0 7 -1.83 5 -1.48 98.4 5 -1.90 -13.6	33	0.04
81 55.1 64.2 55 1.49 29 0.00 119.3 47 0.86 -9.1 85 52.9 70.8 48 0.92 54 1.19 123.7 53 1.44 -17.9	50 16	1.01 -0.88
86 50.7 57.9 36 0.34 10 -1.14 108.6 20 -0.56 -7.2	54	1.41
87 48.6 60.3 25 -0.21 16 -0.70 108.9 21 -0.52 -11.7	44	0.45
93 44.0 57.7 10 -1.41 9 -1.17 101.7 7 -1.47 -13.7	32	0.02
97 53.1 66.7 49 0.97 43 0.45 119.8 48 0.93 -13.6 98 48.6 64.8 25 -0.21 33 0.11 113.4 31 0.08 -16.2	33 20	0.04 -0.51
98 48.6 64.8 25 -0.21 33 0.11 113.4 31 0.08 -16.2 99 49.5 64.9 31 0.03 34 0.13 114.4 33 0.21 -15.4	21	-0.34
平均値(%) 48.6 63.6 112.1 -15.0		0.04
標準偏差(%) 6.02 5.33 9.41 6.39		
変動係数 (%) 12.4 8.38 8.39 -42.7		
$Q_1(15.5)$ 47.2 59.7 106.9 -18.0		
<i>Q</i> ₂ (30) 49.4 64.2 112.8 -13.8		
<i>Q</i> ₃ (44.5) 52.3 67.2 117.1 -11.7		
$IQR = Q_3 - Q_1$ 5.1 7.5 10.2 6.3		
σ_1 = $IQR \times 0.7413$ 3.82 5.55 7.56 4.67		
$v_1 = (\sigma_1/Q_2) \times 100$ 7.73 8.64 6.70 -33.8		

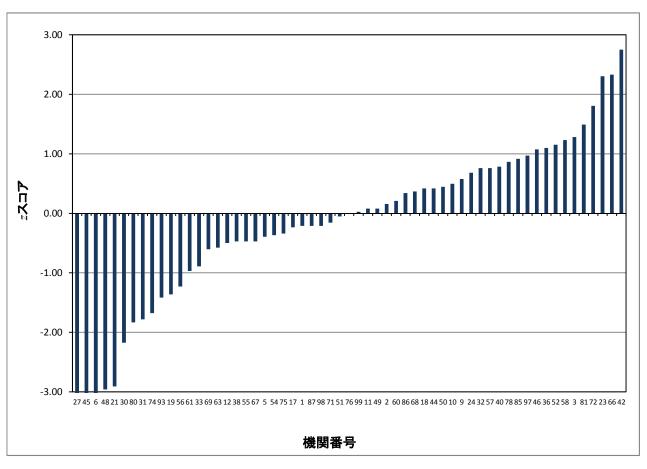


図 5.27 粘土分含有率(A試料)のzスコア

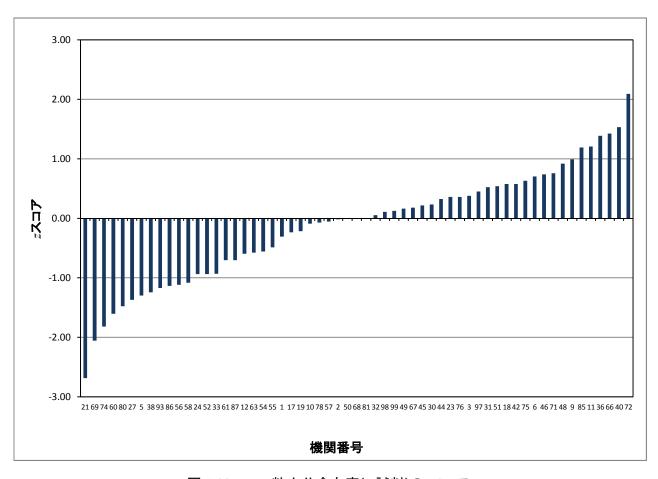


図 5.28 粘土分含有率(K試料)のzスコア

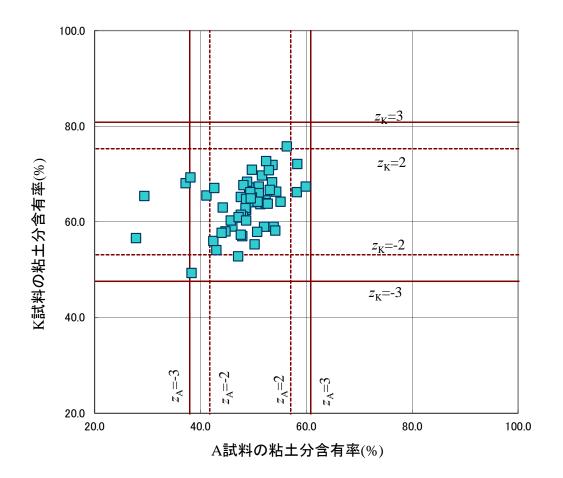


図 5.29 散布図による評価 (粘土分含有率)

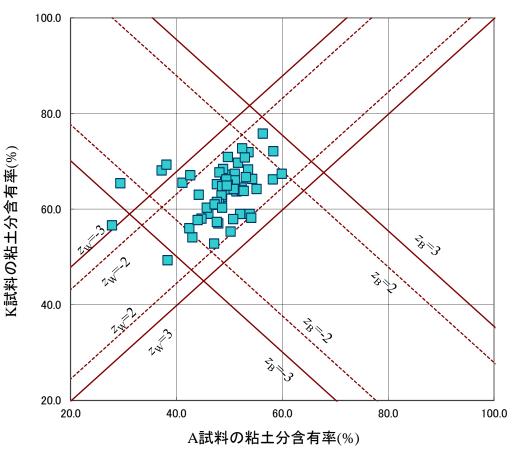
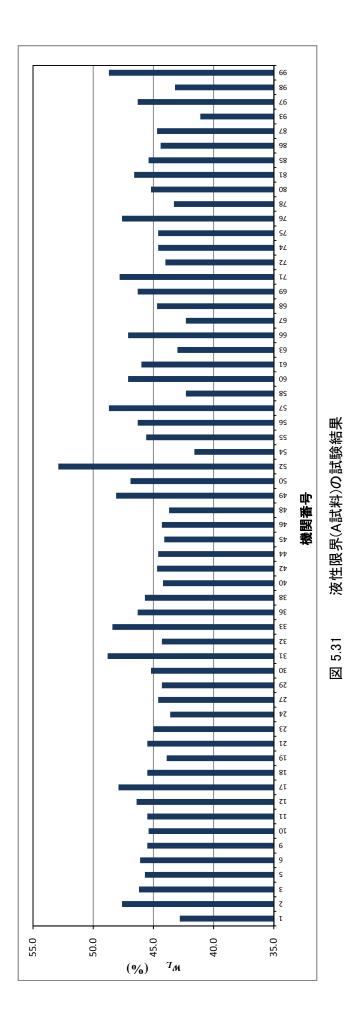



図 5.30 z_B, z_Wによる評価(粘土分含有率)

7.5 īΖ ۷9 ٤9 τ9 09 液性限界(K試料)の試験結果 機関番号 St לל 33 図 5.32 35 33 (**%**) 50.0 65.0 55.0 70.0 7_M

33

表 5.7 液性限界の測定値とそのzスコア

試験	測定化	直(%)	A試料σ		K試料の		試験様	と と関間の2		試験棧	と と関内の2	スコア
機関名	A試料	 K試料	順位	z _A	順位	z _K	A+K	順位	z _B	A-K	順位	z _w
1	42.8	58.9	5	-1.71	20	-0.30	101.7	13	-0.74	-16.1	6	-1.73
2	47.6	61.6	50	1.45	45	0.84	109.2	51	1.05	-14.0	39	0.29
<u>3</u> 5	46.2 45.7	60.8 58.8	40 36	0.53 0.20	37 18	0.51 -0.34	107.0 104.5	38 28	0.53 -0.07	-14.6 -13.1	24 48	-0.29 1.16
6	46.1	62.1	39	0.46	49	1.05	104.5	46	0.81	-16.0	7	-1.64
9	45.5	60.8	31	0.07	37	0.51	106.3	35	0.36	-15.3	13	-0.96
10	45.4	60.9	29	0.00	40	0.55	106.3	35	0.36	-15.5	11	-1.16
11	45.5	62.4	31	0.07	51	1.18	107.9	43	0.74	-16.9	2	-2.51
12 17	46.4 47.9	60.8 62.1	45 53	0.66 1.65	37 49	0.51 1.05	107.2 110.0	40 52	0.57 1.24	-14.4 -14.2	26 33	-0.10 0.10
18	45.5	59.8	31	0.07	34	0.08	105.3	32	0.12	-14.3	32	0.00
19	43.9	59.1	11	-0.99	22	-0.21	103.0	18	-0.43	-15.2	15	-0.87
21	45.5	55.4	31	0.07	4	-1.77	100.9	8	-0.93	-9.9	59	4.24
23 24	45.0 43.6	59.6 58.2	26 9	-0.26 -1.18	30 14	0.00 -0.59	104.6 101.8	29 14	-0.05 -0.72	-14.6 -14.6	21 21	-0.29 -0.29
27	44.6	56.9	19	-0.53	10	-1.14	101.5	12	-0.72	-14.0	54	1.93
29	44.3	59.2	15	-0.72	24	-0.17	103.5	22	-0.31	-14.9	18	-0.58
30	45.2	59.0	27	-0.13	21	-0.25	104.2	25	-0.14	-13.8	42	0.48
31	48.8	63.1	58	2.24	54	1.48	111.9	57	1.70	-14.3	29	0.00
32 33	44.3 48.4	56.6 64.3	15 55	-0.72 1.97	9 57	-1.26 1.98	100.9 112.7	8 58	-0.93 1.89	-12.3 -15.9	53 10	1.93 -1.54
36	46.3	60.5	41	0.59	36	0.38	106.8	37	0.48	-15.9	33	0.10
38	45.7	61.7	36	0.20	46	0.89	107.4	41	0.62	-16.0	7	-1.64
40	44.2	56.9	14	-0.79	10	-1.14	101.1	11	-0.88	-12.7	51	1.54
42	44.7	58.5	23	-0.46	17	-0.46	103.2	19	-0.38	-13.8	42	0.48
44 45	44.6 44.1	58.8 58.3	19 13	-0.53 -0.86	18 15	-0.34 -0.55	103.4 102.4	20 16	-0.33 -0.57	-14.2 -14.2	35 35	0.10
46	44.1	55.9	15	-0.72	5	-1.56	100.2	7	-1.10	-11.6	57	2.60
48	43.7	59.7	10	-1.12	32	0.04	103.4	20	-0.33	-16.0	7	-1.64
49	48.1	59.9	54	1.78	35	0.13	108.0	44	0.76	-11.8	56	2.41
50	46.9	64.5	47	0.99	58	2.07	111.4	55	1.58	-17.6	1	-3.18
52 54	52.9 41.6	67.8 56.2	59 2	4.94 -2.50	59 7	3.46 -1.43	120.7 97.8	59 3	3.80 -1.67	-14.9 -14.6	19 21	-0.58 -0.29
55	45.6	59.2	35	0.13	24	-0.17	104.8	30	0.00	-13.6	45	0.29
56	46.3	61.7	41	0.59	46	0.89	108.0	44	0.76	-15.4	12	-1.06
57	48.7	63.1	56	2.17	54	1.48	111.8	56	1.67	-14.4	26	-0.10
58	42.3	54.8	3	-2.04	1	-2.02	97.1	2	-1.84	-12.5	52	1.73
60 61	47.1 46.0	61.3 62.8	48 38	1.12 0.39	41 53	0.72 1.35	108.4 108.8	47 49	0.86 0.96	-14.2 -16.8	35 3	0.10 -2.41
63	43.0	54.9	6	-1.58	2	-1.98	97.9	4	-1.65	-11.9	55	2.31
66	47.1	63.3	48	1.12	56	1.56	110.4	53	1.34	-16.2	5	-1.83
67	42.3	55.9	3	-2.04	5	-1.56	98.2	5	-1.58	-13.6	45	0.67
68 69	44.7 46.3	59.2 59.5	23 41	-0.46 0.59	24 29	-0.17 -0.04	103.9 105.8	24 33	-0.21 0.24	-14.5 -13.2	25 47	-0.19 1.06
71	47.8	59.2	52	1.58	24	-0.17	103.8	38	0.24	-11.4	58	2.79
72	44.0	58.4	12	-0.92	16	-0.51	102.4	16	-0.57	-14.4	26	-0.10
74	44.6	61.3	19	-0.53	41	0.72	105.9	34	0.26	-16.7	4	-2.31
75 76	44.6	59.6	19	-0.53	30	0.00	104.2	25	-0.14	-15.0	16	-0.67
76 78	47.6 43.3	61.5 57.6	50 8	1.45 -1.38	44 12	0.80 -0.84	109.1 100.9	50 8	1.03 -0.93	-13.9 -14.3	41 29	0.39
80	45.2	59.2	27	-0.13	24	-0.84	100.9	27	-0.93	-14.0	39	0.00
81	46.6	61.9	46	0.79	48	0.97	108.5	48	0.88	-15.3	13	-0.96
85	45.4	59.7	29	0.00	32	0.04	105.1	31	0.07	-14.3	29	0.00
86 87	44.4	59.1	18 23	-0.66 -0.46	22	-0.21 -0.94	103.5	22	-0.31 -0.60	-14.7 -12.0	20	-0.39
93	44.7 41.1	57.6 55.3	1	-0.46 -2.83	12 3	-0.84 -1.81	102.3 96.4	15 1	-0.60 -2.01	-12.9 -14.2	50 35	1.35 0.10
97	46.3	61.3	41	0.59	41	0.72	107.6	42	0.67	-15.0	16	-0.67
98	43.2	56.3	7	-1.45	8	-1.39	99.5	6	-1.27	-13.1	48	1.16
99	48.7	62.5	56	2.17	52	1.22	111.2	54	1.53	-13.8	42	0.48
平均値 (%) 標準偏差(%)	45.5 2.03	59.8 2.62					105.2 4.46			-14.3 1.47		
<u> </u>	4.47	4.39					4.40			-10.3		
$Q_1(15.5)$	44.3	58.4					102.4			-15.1		
$Q_1(13.3)$ $Q_2(30)$	45.4	59.6					104.8			-14.3		
$Q_3(44.5)$	46.4	61.6					104.8			-14.3 -13.7		
$IQR = Q_3 - Q_1$		3.2					5.6			1.4		
	2.1											
$\sigma_1 = IQR \times 0.7413$	1.52	2.37					4.19			1.04		
$v_1 = (\sigma_1/Q_2) \times 100$	3.35	3.98					4.0			-7.3		

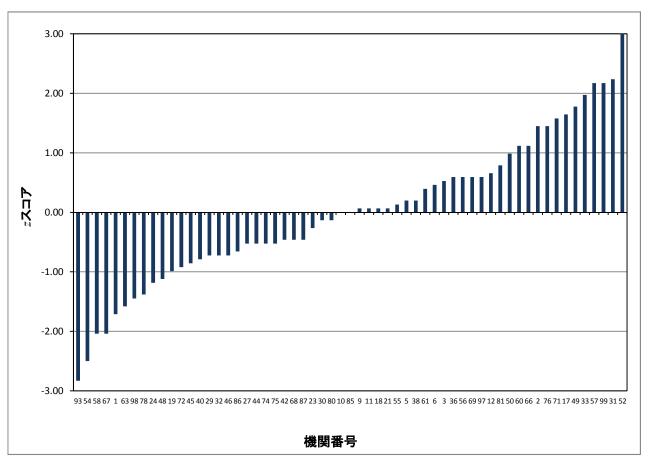


図 5.33 液性限界(A試料)のzスコア

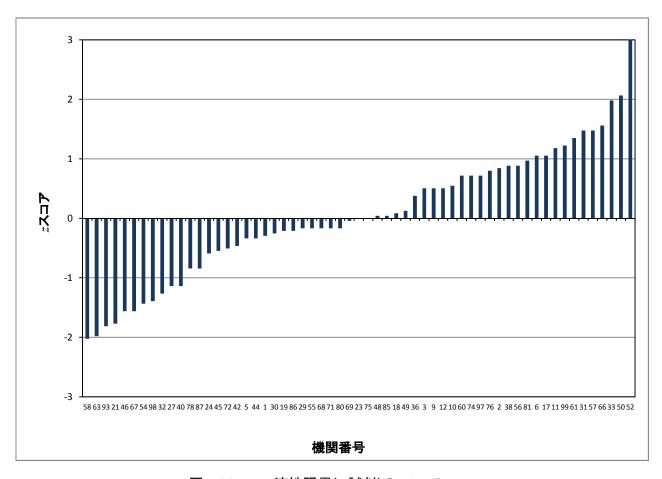


図 5.34 液性限界(K試料)のzスコア

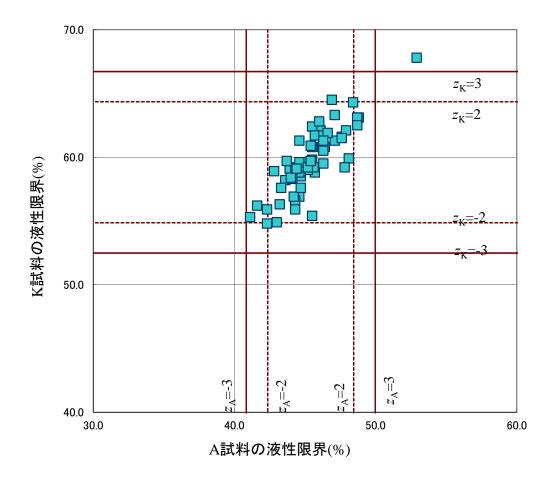


図 5.35 散布図による評価 (液性限界)

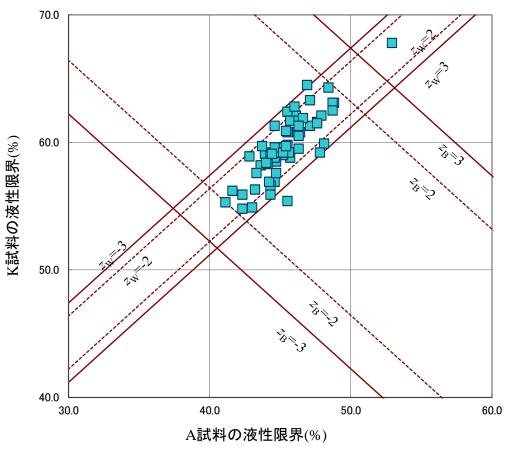
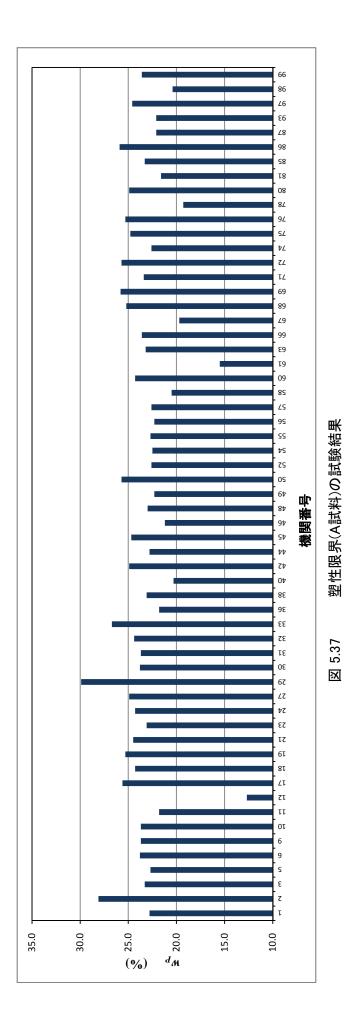



図 5.36 z_B , z_W による評価(液性限界)

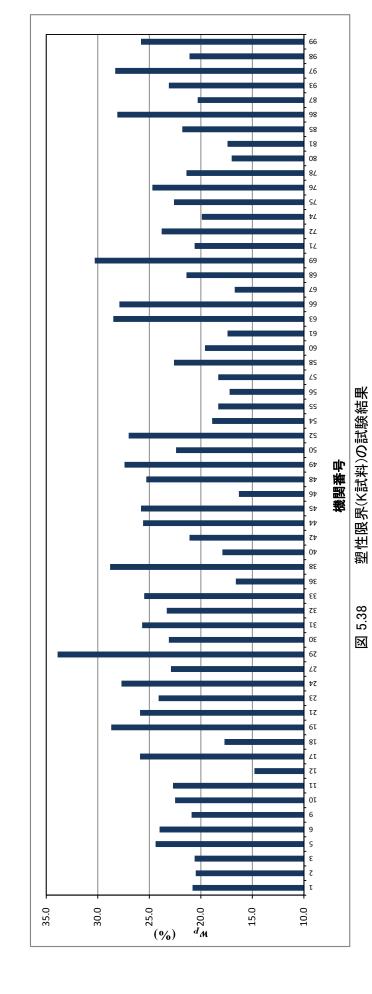


表 5.8 塑性限界の測定値とそのzスコア

Head Section Head Text Head Text Text	試験	測定	直 (%)	A試料の		K試料σ	シスコア		と と関間の2		試驗格	と関内の2	スコア
1			. ,										
2 28.1 20.5 58 2.70 1.7 -0.96 48.6 40 0.31 7.8 58 1.8 3 2.33 20.0 -2.8 -0.00 1.8 -0.48 43.9 20 -0.54 2.7 1.4 0.54 5 2.23 24.4 20 -0.40 39 0.43 47.1 31 0.04 -1.7 20 -0.24 9 2.37 22.5 33 0.17 21 -0.41 44.6 24 -0.42 2.8 -0.13 1.2 23 0.01 -0.02 48.2 2.8 -0.13 1.2 2.0 1.3 1.1 2.1 -0.01 1.2 2.0 1.3 1.2 2.0 1.3 1.0 2.0 1.2 0.01 1.0 2.0 2.2 2.2 2.0 0.0 2.0 1.2 2.0 1.0 2.0 2.2 2.0 0.0 3.1 1.2 0.0 2.2 1.0 </td <td>1</td> <td></td>	1												
5	2												
6				28			-0.48		20			41	
9 9 237 209 33 0.07 21 21 -0.04 44.6 24 -0.42 28 -0.43 12 23 0.13 11 0 237 225 33 0.17 21 -0.02 46.2 28 -0.13 12 23 0.13 11 1 218 22.7 10 -0.02 31 0.02 44.5 23 -0.43 -0.09 25 -0.43 12 12.7 14.8 1 -6.14 1 -1.16 27.5 1 -3.5 1 -3.5 1 -3.5 1 -2.1 15 -0.76 17 25.6 25.9 52 12.6 47 0.79 51.5 40 0.83 -0.3 27 -0.27 18 243 17.7 38 0.52 9 -1.17 42.0 15 -0.98 6.6 57 1.59 19 25.3 28.7 50 10.9 56 1.46 54.0 15 -0.98 6.6 57 1.59 19 25.3 28.7 50 10.9 56 1.46 54.0 55 1.29 -3.4 9 -1.11 21 24 24.5 27.7 38 0.52 9 -1.17 42.0 15 -0.98 6.6 57 1.59 23 23 23.1 24.1 22 -0.17 38 0.95 47 0.73 50.4 47 0.03 -1.4 21 -0.57 23 23 23.1 24.1 22 -0.17 38 0.95 51 12.2 52.0 55 0.02 -3.4 9 -1.11 27 249 22.9 46 0.66 6.32 0.07 47.8 55 0.06 5.0 1.0 23 -0.48 29 29 33.9 59 3.73 59 2.70 58.8 59 3.06 -40 7 -1.27 30 2.8 23.1 36 0.23 33 0.12 46.9 0.00 0.00 0.7 30 0.00 31 2 2.4 2 22.9 46 0.66 0.65 32 0.07 47.8 55 0.00 0.00 0.7 30 0.00 31 2 2.4 2 23 3 41 0.5 0.23 33 0.12 46.9 0.00 0.0 0.0 7 30 0.00 32 2 2.4 3 32 41 36 0.23 33 0.12 46.9 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													
10													
11													
Texas													
18	12	12.7	14.8		-6.14		-1.86	27.5	1	-3.51		15	-0.76
19													
21 24.5 25.9 42 0.63 47 0.79 50.4 47 0.63 -1.4 21 -0.57 24 24.3 27.7 38 0.52 51 1.22 52.0 0.5 0.01 -3.4 9 -1.11 27 24.9 22.9 46 0.86 32 0.07 47.8 35 0.02 -3.4 9 -1.11 29 29.9 33.9 59 3.73 59 2.70 63.8 59 3.06 -4.0 7 -1.27 30 23.1 33.6 0.23 33 0.12 4.4 0.3 0.00 0.7 30 0.00 31 23.7 25.5 57 1.89 42 0.69 52.2 54 0.06 1.2 32 0.13 38 21.1 28.8 25 -0.17 57 1.48 51.9 52 54 0.06 1.2 32 <													
23 23.1 24.1 25 -0.17 38 0.36 47.2 32 0.05 -1.0 23 -0.46 24 24.3 27.7 38 0.52 51 122 52.0 53 0.92 -3.4 9 -1.11 27 24.9 22.9 46 0.86 32 0.07 47.8 35 0.16 2.0 37 0.35 29 29.9 33.9 59 3.73 59 2.70 6.38 59 3.06 4-0.7 -1.27 30 23.8 23.1 36 0.23 33 0.12 46.9 30 0.00 0.7 30 0.00 31 23.7 25.7 33 0.17 44 0.74 4.94 41 0.45 -2.0 18 -0.73 32 24.4 23.3 41 0.57 35 0.17 47.7 34 0.14 1.1 31 0.11 33 26.7 25.5 57 1.89 42 0.69 52.2 54 0.96 1.2 22 0.13 36 21.8 16.6 10 -0.92 3 -1.43 38.4 6 -1.54 5.2 56 1.21 38 22.1 28.8 25 -0.17 57 1.48 51.9 52 0.91 -57 1 -1.73 40 20.3 17.9 5 -1.78 10 -1.12 38.2 5 -1.58 2.4 40 0.46 42 24.9 22.1 46 0.96 22 -0.36 46.0 27 -0.16 3.8 48 0.94 444 22.8 25.6 22 -0.34 43 0.75 45 0.76 50.5 48 0.05 -1.4 0.45 46 21.2 16.3 8 -7.25 2 -1.50 3.75 44 -1.07 4.9 54 1.1 48 23.0 25.3 24 -0.23 41 0.64 46.3 38 0.25 -2.3 12 -0.49 46 21.2 16.3 8 -7.25 2 -1.50 3.75 44 -1.07 4.9 54 1.1 48 23.0 25.3 27.4 14 -0.63 50 1.15 49.7 45 0.5 -1.3 -0.51 50 25.7 22.4 53 1.32 27 -0.05 48.1 37 0.25 3.3 46 0.70 51 22.2 22.1 17 -0.46 49 1.5 49 0.49 -4.4 5. 1.0 52 22.2 17 1.4 -0.63 50 1.15 49.5 49.6 49.9 -2.1 15 5.0 53 22.5 18.9 16 -0.52 13 -0.88 41.4 12 -1.00 3.6 47 -0.8 54 22.5 18.9 16 -0.52 13 -0.88 41.4 12 -1.00 3.6 47 -0.8 53 22.5 18.9 18 -0.52 13 -0.88 41.4 12 -1.00 3.6 47 -0.8 54 22.5 18.9 18 -0.52 13 -0.88 41.4 12 -0.09 3.8 47 -0.8 55 22.7 18.3 20 -0.05 3.8 -1.34 5.1 5.5 1.19 56 22.3 17.4 4 -													
244 24.3 27.7 38 0.52 51 1.22 52.0 53 0.92 -3.4 9 -1.11 27 24.9 22.9 46 0.86 32 0.07 47.8 35 0.16 2.0 37 0.55 2.9 28.9 33.9 59 3.73 59 2.70 63.8 59 3.06 -4.0 7 -1.27 30 23.8 23.1 36 0.23 33 0.12 46.9 30 0.00 0.7 30 0.00 31 23.7 25.7 33 0.17 44 0.74 49.4 41 0.45 2.0 18 -0.73 32 24.4 23.3 41 0.57 35 0.17 47.7 34 0.14 11 31 0.11 33 26.7 25.5 57 1.89 42 0.09 52.2 54 0.06 12 22 0.13 36 21.8 16.6 10 -0.92 3 -1.12 38.4 6 1-1.54 5.2 56 1.21 38 23.1 28.8 25 -0.17 57 1.48 51.9 52 0.91 -5.7 11 -1.73 40 20.3 17.9 5 -1.78 10 -1.12 38.2 5 -1.58 2.4 40 0.46 44 22.8 25.6 22 -0.34 43 0.72 48.4 39 0.27 -0.16 3.8 48 0.44 44 22.8 25.6 22 -0.34 43 0.72 48.4 39 0.27 -2.8 11 -0.94 46 21.2 16.3 8 -1.26 2 -1.30 3.75 5 4 4 -1.70 4.9 54 1.13 48 23.0 25.3 24 -0.23 41 0.64 49 1.05 49.7 45 0.05 1.2 2 -0.38 48.0 44 49 22.3 27.4 14 -0.63 5.7 1.0 3.75 4 4 -1.70 4.9 54 1.13 49 22.3 27.4 14 -0.63 50 1.15 49.7 45 0.51 48 0.05 -1.1 22 0.03 48 23.0 25.3 24 -0.23 41 0.64 49 1.05 49.0 40.5 -1.1 22 0.04 49 22.3 27.4 14 -0.63 6 2 -1.50 37.5 4 -1.70 4.9 54 1.13 49 22.3 27.4 14 -0.63 50 1.15 49.7 45 0.51 1 -1.0 4.9 54 1.13 55 22.6 27.0 17 -0.46 49 1.05 49.6 44 0.49 -4.4 5 -1.36 55 22.6 17.0 17 -0.46 49 1.05 49.6 44 0.49 -4.4 5 -1.36 55 22.2 18.3 10 -0.40 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 55 22.7 18.3 20 -0.40 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 56 22.3 17.2 14 -0.63 6 -1.29 39.5 8 1.34 5.1 55 1.19 57 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 58 20.5 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 58 20.5 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 58 20.5 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 58 20.5 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 59 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 59 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 59 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52.1 1.0 57 59 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0													
299 299 339 59 373 59 2.70 638 59 3.06 -40 7 -1.27	24			38		51			53	0.92		9	
30													
31 23.7 25.7 33 0.17 44 0.74 49.4 1 0.46 -20 18 0.73 32 2244 233 41 0.57 35 0.17 47.7 34 0.14 1.1 31 0.11 33 26.7 25.5 57 1.89 42 0.69 522 54 0.96 12 32 0.13 36 21.8 16.6 10 -0.92 3 -1.14 52 52 56 1.13 38 23.1 28.8 25 -0.17 5.7 1.48 51.9 52 0.91 -5.7 1 -1.73 40 20.3 17.9 5 -1.78 10 -1.12 38.2 5 -1.58 2.4 40 0.46 42 24.9 21.1 46 0.86 22 -0.36 46.0 27 -0.16 3.8 48 0.84 44 22.8 25.6 22 -0.34 43 0.72 48.4 39 0.27 -2.8 11 -0.94 46 21.2 16.3 8 -1.26 22 -1.50 50.5 48 0.65 -1.1 22 0.94 46 21.2 16.3 8 -1.26 22 -1.50 37.5 4 -1.70 4.9 54 1.13 48 23.0 25.3 24 -0.23 41 0.64 48.3 39 0.25 -2.3 12 -0.81 49 22.3 27.4 14 -0.63 50 11.5 49.7 45 0.51 -5.1 3 -1.56 50 25.7 22.4 53 1.32 27 -0.05 48.1 37 0.22 3.3 46 0.75 55 22.2 8 27 0.8 1.3 1.32 27 -0.05 48.1 37 0.22 3.3 46 0.75 55 22.7 18.3 20 -0.40 11 -1.03 41.0 11 -1.07 4.4 55 1.36 55 22.7 18.3 10 -0.52 13 -0.8 49 1.05 48.6 44 0.49 -4.4 55 1.38 55 22.7 18.3 20 -0.40 11 -1.03 41.0 11 -1.07 4.4 55 1.36 56 22.3 17.2 4 -0.63 6 -1.29 39.5 8 -1.34 51 55 1.19 57 22.8 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 55 1.36 60 24.3 19.6 33 0.52 14 -0.22 4 -1.4 1.0 4.9 39.5 8 -1.34 51 55 1.19 60 24.3 19.6 33 0.52 14 -0.22 4 -1.4 1.0 4.9 39.5 8 -1.34 51 55 1.19 60 24.3 19.6 33 0.52 14 -0.22 4 -1.4 1.0 4.9 39.5 8 -1.34 51 55 1.19 60 24.3 19.6 33 0.52 14 -0.22 4 -1.4 39.2 0 -0.54 4.7 53 1.06 61 15.5 17.4 2 -4.53 7 -1.66 29 0.00 43.1 18 -0.69 -2.1 15 0.97 7.5 2.8 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 7.5 3 1.06 61 15.5 17.4 2 -4.53 7 -1.66 29 0.00 43.1 18 -0.69 -2.1 15 0.97 7.5 2.8 13.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52 1.00 62 23.2 24.5 27 0.11 55 1.44 50.7 5 1.34 51 55 1.19 63 23.2 22.8 57 -0.01 55 1.41 51.7 51 0.87 -3.3 4.9 10 0.7 1.9 4.9 54 1.3 51 55 1.19 64 25.5 22.6 4.5 3.0 0.00 4.3 1.8 0.00 -0.5 3.8 49 0.05 4.7 1.3 0.97 7.5 2.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52 1.0 0.0 60 2.4 1.0 6.0 60 2.0 0.0 4.3 1.8 0.0 0.0 4.3 1.8 0.0 0.0 4.3 1.8 0.0 0.0 4.3 1.8 0.0 0.0 4.3 1.8 0.0 0.0 4.3 1.8 0.0 0.0 4.3 1.8 0.0 0.0 4.3 1.8 0.0 0.0 4.3 1.8 0.0 0.0 0.0 4.3 1.8 0.0 0.0 0.0 4.3 1.8 0.0 0.													
32													
333													
36 218 16.6 10 -0.92 3 -1.43 38.4 6 -1.54 5.2 56 1.21 38 231 228 25 -0.17 57 1.48 51.9 52 0.91 -5.7 1 -1.73 40 20.3 17.9 5 -1.78 10 -1.12 38.2 5 -1.58 2.4 40 0.46 42 24.9 21.1 46 0.86 22 -0.36 46.0 27 -0.16 3.8 48 0.84 44 22.8 25.6 22 -0.34 43 0.72 48.4 39 0.27 -2.8 11 -0.94 45 24.7 25.8 44 0.75 45 0.76 50.5 48 0.65 -1.1 22 -0.49 46 21.2 16.3 8 -1.26 2 -1.50 37.5 4 -1.70 4.9 54 1.13 48 23.0 25.3 24 -0.23 41 0.64 48.3 38 0.25 -2.3 12 -0.81 49 22.3 27.4 14 -0.63 50 11.5 49.7 45 0.15 -5.1 3 -1.56 50 25.7 22.4 53 1.32 27 -0.05 48.1 37 0.22 3.3 46 0.70 52 22.6 27.0 17 -0.46 49 1.05 49.6 44 0.39 -4.4 5 -1.38 54 22.5 18.9 16 -0.52 13 -0.88 41.4 12 -1.00 3.6 47 0.78 55 22.7 18.3 20 -0.40 11 -1.03 41.0 11 -1.07 4.4 52 1.00 56 22.3 17.2 14 -0.63 6 -1.29 39.5 8 -1.34 51. 55 1.19 57 22.6 18.3 17 -0.46 11 -1.03 40.9 10 -1.09 4.3 51 1.95 58 20.5 22.6 7 -1.66 29 0.00 43.1 18 -0.99 10 -1.09 4.3 51 1.95 58 20.5 22.6 7 -1.66 29 0.00 43.1 18 -0.99 2.1 15 -0.76 60 24.3 19.6 38 0.52 14 -0.72 43.9 20 -0.54 4.7 53 1.96 61 15.5 17.4 2 -4.53 7 -1.46 29 0.00 43.1 18 -0.99 2.1 15 -0.76 60 24.3 19.6 38 0.52 14 -0.72 43.9 20 -0.54 4.7 53 1.09 63 23.2 28.5 27 -0.11 55 1.41 57.7 51 0.87 5.3 1.9 77 72 2.6 18.3 2.7 -0.11 55 1.41 57.7 51 0.87 5.3 1.9 1.9 0.77 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 72 22.6 19.9 17 -0.46 15 -0.68 5 -1.34 11 51 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	33												
40	36		16.6		-0.92	3	-1.43	38.4	6		5.2	56	1.21
42 24.9 21.1 46 0.86 22 -0.38 48.0 27 -0.16 3.8 48 0.84 444 22.8 25.6 22 -0.34 43 0.72 48.4 39 0.27 -2.8 11 -0.94 45 24.7 25.8 44 0.75 45 0.76 50.5 48 0.66 -1.1 22 -0.94 46 21.2 16.3 8 -1.26 2 -1.50 37.5 4 -1.70 49 54 1.13 48 22.3 27.4 14 -0.63 50 1.15 49.7 45 0.51 -51 3 -1.56 50 25.7 22.26 27.0 17 -0.46 49 1.05 49.6 44 0.49 -4.4 5 -1.38 54 22.5 18.9 16 -0.52 13 -0.88 41.4 12 -1.0 3.6													
444 22.8 25.6 22 -0.34 43 0.72 48.4 39 0.27 -2.8 11 -0.94 455 24.7 25.8 44 0.75 45 0.76 50.5 48 0.65 -1.1 22 -0.49 460 21.2 18.3 8 -1.26 2 -1.50 37.5 4 -1.70 4.9 54 11.3 481 23.0 25.3 24 -0.23 41 0.64 48.3 38 0.25 -2.3 12 -0.81 49 22.3 27.4 14 -0.63 50 1.15 49.7 45 0.51 -5.1 3 -1.56 50 25.7 22.4 53 13.2 27 -0.05 48.1 37 0.22 33.3 46 0.70 52 22.6 27.0 17 -0.46 49 1.05 49.6 44 0.49 -4.4 5 -1.33 54 22.5 18.9 16 -0.52 13 -0.88 41.4 12 -1.00 3.6 47 0.78 55 22.7 18.3 20 -0.40 11 -1.03 41.0 11 -1.07 44.4 52 1.00 55 22.7 18.3 17 -0.46 11 -1.03 49.9 10 -1.09 4.3 51 55 1.19 57 22.6 18.3 17 -0.46 11 -1.03 40.9 10 -1.09 4.3 51 0.97 58 20.5 22.6 7 -1.66 29 0.00 43.1 18 -0.69 -2.1 15 -0.76 60 24.3 19.6 38 0.52 14 -0.72 43.9 20 -0.54 4.7 53 1.68 61 15.5 17.4 2 -4.53 7 -1.24 32.9 2 -2.53 -1.9 19 -0.70 63 23.2 28.5 27 -0.11 55 1.41 51.7 51 0.87 -5.3 2 -1.62 66 23.6 27.9 31 0.11 52 1.27 51.5 49 0.83 -4.3 6 -1.35 67 19.7 16.7 4 -2.12 4 -1.41 36.4 3 -1.90 30 0.45 0.84 69 25.8 30.3 55 1.38 58 1.84 561 59 1.67 -4.5 4 -1.36 60 24.3 19.6 38 55 1.38 58 1.84 561 59 -3.3 2 -1.62 66 23.6 27.9 31 0.11 52 1.27 51.5 49 0.83 -4.3 6 -1.35 67 19.7 16.7 4 -2.12 4 -1.41 36.4 3 -1.90 30 0.45 68 25.2 21.4 49 10.3 24 -0.29 46.6 29 -0.05 3.8 49 0.34 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.37 72 25.7 23.8 53 13.2 36 0.29 40.7 9 -1.12 -2.1 17 -0.76 60 24.9 17.0 46 0.86 5 -1.34 41.9 14 -0.91 7.9 59 1.													
45 247 258 44 0.75 45 0.76 50.5 48 0.65 -1.1 22 -0.49 46 212 16.3 8 -1.26 2 -1.50 37.5 4 -1.70 4.9 54 13.3 48 23.0 25.3 24 -0.23 41 0.64 48.3 38 0.25 -2.3 12 -0.81 49 22.3 27.4 14 -0.63 50 1.1.5 49.7 45 0.51 -5.1 3 -1.56 50 25.7 22.4 53 13.2 27 -0.05 48.1 37 0.22 3.3 46 0.70 52 22.6 27.0 17 -0.46 49 1.05 49.6 44 0.49 -4.4 5 -1.38 54 22.5 18.9 16 -0.52 13 -0.88 41.4 12 -1.00 3.6 47 0.78 55 22.7 18.3 20 -0.40 11 -1.03 41.0 11 -1.07 4.4 52 1.00 56 22.3 17.2 14 -0.63 6 -1.29 39.8 8 -1.34 5.1 55 1.19 57 22.6 18.3 17 -0.46 11 -1.03 40.9 10 -1.09 4.3 51 0.97 58 20.5 22.6 7 -1.66 29 0.00 43.1 18 -0.69 -2.1 15 -0.76 60 24.3 19.6 38 0.52 14 -0.72 43.9 20 -0.54 4.7 53 1.08 61 15.5 17.4 2 -4.53 7 -1.24 32.9 2 -2.53 -1.9 19 -0.70 63 23.2 22.8 5 27 -0.11 55 1.41 51.7 51 0.87 -5.3 2 -1.66 66 23.6 27.9 31 0.11 55 1.41 51.7 51 0.87 -5.3 2 -1.66 67 19.7 16.7 4 2 -4.53 7 -1.24 32.9 2 -2.53 -1.9 19 -0.70 68 25.8 30.3 55 13.8 58 1.84 55.1 56 1.97 71 23.4 20.6 30 0.00 0.00 48.4 40 22 -0.55 3.8 49 0.84 69 25.8 30.3 55 13.8 58 1.84 55.1 56 1.99 71 23.4 20.6 30 0.00 0.00 48.4 40 22 -0.05 3.8 49 0.84 69 25.8 30.3 55 13.8 58 1.84 55.1 56 1.99 72 25.7 23.8 53 13.2 36 0.29 49.5 43 0.47 1.9 36 0.32 74 22.6 19.9 17 -0.46 15 -0.46 44.9 1.0 3.0 45 0.62 86 25.2 21.4 49 1.03 24 -0.29 46.6 29 -0.05 3.8 49 0.84 69 25.8 30.3 55 13.8 58 1.84 55.1 56 1.67 -4.5 4 -1.40 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.55 3.8 49 0.84 75 24.8 22.6 45 0.80 29 0.00 47.4 33 0.09 22 39 0.40 76 25.3 24.7 50 1.09 40 0.50 50.0 46 0.56 0.6 29 -0.03 78 19.3 12.1 3.1 12 -0.75 33 1.31 54.0 56 1.29 -0.05 3.8 49 0.84 75 24.8 22.6 45 0.80 29 0.00 47.4 33 0.09 22 39 0.40 99 23.6 25.8 31 1.1 12 -0.75 33 1.13 54.0 56 1.29 -0.21 1.5 50 0.90 ##################################													
486 212 16.3 8 -1-26 2 -1-50 37.5 4 -1.70 4.9 54 1.13 4.8 23.0 25.3 24 -0-23 41 0.64 48.3 38 0.25 -2.3 12 -0.81 4.9 22.3 27.4 14 -0.63 50 1.15 49.7 45 0.51 -5.1 3 -1.56 50 25.7 22.4 53 1.32 27 -0.05 48.1 37 0.22 3.3 46 0.70 52 22.6 27.0 17 -0.46 49 1.05 49.6 44 0.49 -4.4 5 -1.38 54 22.5 18.9 16 -0.52 13 -0.88 41.4 12 -1.00 3.6 47 0.78 55 22.7 18.3 20 -0.40 11 -1.03 41.0 11 -1.07 4.4 52 1.00 5.6 22.3 17.2 14 -0.63 6 -1.29 39.5 8 -1.34 5.1 55 1.19 57 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.07 4.4 52 1.00 5.6 22.3 17.2 14 -0.63 6 -1.29 39.5 8 -1.34 5.1 55 1.19 57 22.6 18.3 17 -0.46 11 -1.03 41.0 11 -1.09 4.3 51 0.97 6.0 24.3 19.6 38 0.52 14 -0.72 43.9 20 -0.54 4.7 53 1.08 61 1.55 17.4 2 -4.53 7 -1.24 32.9 2 -2.53 -1.9 19 -0.70 6.3 23.2 28.5 27 -0.11 55 1.41 51.7 51 0.87 -5.3 2 -1.62 6.6 23.8 27.9 31 0.11 52 1.27 51.5 49 0.83 -4.3 6 -1.36 6.0 25.8 27.9 31 0.11 52 1.27 51.5 49 0.83 -4.3 6 -1.36 6.0 25.8 22.1 4 49 1.03 24 -0.29 46.6 29 -0.05 3.8 49 0.84 6.9 2.8 8 30.3 55 1.38 58 1.84 56.1 58 1.67 -4.55 4 1.40 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.37 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.37 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.37 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.37 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.32 74 2.6 54 59.9 17 0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 2.8 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 2.8 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 2.8 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 2.8 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 2.8 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 2.8 18.9 17 0.9 46 0.86 5 -1.34 41.9 1.4 -0.91 7.9 59 1.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4													
49 22.3 27.4 14 -0.63 50 1.15 49.7 45.5 0.51 -5.1 3 -1.56	46												
50													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
54 22.5 18.9 16 -0.52 13 -0.88 41.4 12 -1.00 3.6 47 0.78 55 22.3 18.3 20 -0.40 11 -1.03 41.0 11 -1.07 4.4 52 1.00 56 22.3 17.2 14 -0.63 6 -1.29 39.5 8 -1.34 5.1 55 1.19 57 22.6 18.3 17 -0.46 11 -1.03 40.9 10 -1.09 4.3 51 0.97 58 20.5 22.6 7 -1.66 29 0.00 43.1 18 -0.69 -2.1 15 -0.76 60 24.3 19.6 38 0.52 14 -0.72 43.9 20 -0.54 4.7 53 1.08 61 15.5 17.4 2 -4.53 7 -1.24 32.9 2 -2.53 -1.9 19 -0.70 63 23.2 28.5 27 -0.11 55 1.14<													
55 22.7													
57 22.6 18.3 17 -0.46 11 -1.03 40.9 10 -1.09 4.3 51 0.97 58 20.5 22.6 7 -1.66 29 0.00 43.1 18 -0.69 -2.1 15 -0.76 60 24.3 19.6 38 0.52 14 -0.72 43.9 20 -0.54 4.7 53 1.08 61 15.5 17.4 2 -4.53 7 -1.24 32.9 2 -2.53 -1.9 19 -0.70 63 23.2 28.5 27 -0.11 55 1.41 51.7 51 0.87 -5.3 2 -1.52 66 23.6 27.9 31 0.11 52 12.7 51.5 49 0.83 -4.3 6 -1.35 67 19.7 16.7 4 -2.12 4 -1.41 36.4 3 -1.90 3.0 45 0.62 68 25.2 21.4 49 1.03 24 -0.29 46.6 29 -0.05 3.8 49 0.84 69 25.8 30.3 55 13.8 58 1.84 56.1 58 1.67 -4.5 4 -1.40 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.32 74 22.6 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 24.8 22.6 45 0.80 29 0.00 47.4 33 0.09 2.2 39 0.40 76 25.3 24.7 50 1.09 40 0.50 50.0 46 0.56 0.6 29 -0.03 78 19.3 21.4 3 -2.35 24 -0.29 40.7 9 -1.12 -2.1 17 -0.07 80 24.9 17.0 46 0.86 5 -1.34 41.9 14 -0.91 7.9 59 1.94 81 21.6 17.4 9 -1.03 7 -1.24 39.0 7 -1.14 42.5 50 0.94 85 23.3 21.8 28 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 86 25.9 28.1 56 1.44 53 1.31 54.0 56 1.29 -2.2 13 -0.78 87 22.1 20.3 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 \$\psi \psi \psi \psi \psi \psi \psi \psi													
58													
60 24.3 19.6 38 0.52 14 -0.72 43.9 20 -0.54 4.7 53 1.08 61 15.5 17.4 2 -4.53 7 -1.24 32.9 2 -2.53 -1.9 19 -0.70 63 23.2 28.5 27 -0.11 55 1.41 51.7 51 0.87 -5.3 2 -1.62 66 23.6 27.9 31 0.11 52 1.27 51.5 49 0.83 -4.3 6 -1.35 67 19.7 16.7 4 -2.12 4 -1.41 36.4 3 -1.90 3.0 45 0.62 68 25.2 21.4 49 1.03 24 -0.29 46.6 29 -0.05 3.8 49 0.84 69 25.8 30.3 55 1.38 58 1.84 56.1 58 1.67 -4.5 4 -1.40 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.32 74 22.6 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 24.8 22.6 45 0.80 29 0.00 47.4 33 0.09 2.2 39 0.40 76 25.3 24.7 50 1.09 40 0.50 50.0 46 0.56 0.6 29 -0.03 78 19.3 21.4 3 -2.35 24 -0.29 40.7 9 -1.12 -2.1 17 -0.76 80 24.9 17.0 46 0.86 5 -1.34 41.9 14 -0.91 7.9 59 1.94 81 21.6 17.4 9 -1.03 7 -1.24 39.0 7 -1.43 4.2 50 0.94 85 23.3 21.8 28 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 86 25.9 28.1 56 1.44 53 1.31 54.0 56 1.29 -2.2 13 -0.78 87 22.1 20.3 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 99 2.36 2.58 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 2.36 2.58 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 2.36 2.58 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 2.36 2.58 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 2.36 2.58 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 2.36 2.58 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 2.36 2.58 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 2.36 2.58 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 2.36 2.58 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 2.36 2.58 31 0.11 45 0.7													
61 15.5 17.4 2 -4.53 7 -1.24 32.9 2 -2.53 -1.9 19 -0.70 63 23.2 28.5 27 -0.11 55 1.41 51.7 51 0.87 -5.3 2 -1.62 66 23.6 27.9 31 0.11 52 1.27 51.5 49 0.83 -4.3 6 -1.35 67 19.7 16.7 4 -2.12 4 -1.41 36.4 3 -1.90 3.0 45 0.62 68 25.2 21.4 49 1.03 24 -0.29 46.6 29 -0.05 3.8 49 0.84 69 25.8 30.3 55 1.38 58 1.84 56.1 58 1.67 -4.5 4 -1.40 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.32 74 22.6 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 24.8 22.6 45 0.80 29 0.00 47.4 33 0.09 22 39 0.40 76 25.3 24.7 50 1.09 40 0.50 50.0 46 0.56 0.6 29 -0.03 78 19.3 21.4 3 -2.35 24 -0.29 40.7 9 -1.12 -2.1 17 -0.76 80 24.9 17.0 46 0.86 5 -1.34 41.9 14 -0.91 7.9 59 1.94 81 21.6 17.4 9 -1.03 7 -1.24 39.0 7 -1.43 42. 50 0.94 85 23.3 21.8 28 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 86 25.9 28.1 56 1.44 53 1.31 54.0 56 1.29 -2.2 13 -0.78 99 23.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 2.8 12.1 20.3 12 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 2.5 2.1 12 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 2.2 1 11 2 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 2.2 1 11 18.0 99 23.6 28.8 31 0.11 45 0.76 49.4 42.2 -2.2 1 1.8 2.8 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 2.0 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 99 23.6 28.8 31 0.11 45 0.76 49.4 49.7 2.9 90 0.7 2.1 40.00 0.70 0.70 0.70 0.70 0.70 0.70 0.7													
63													
67 19.7 16.7 4 -2.12 4 -1.41 36.4 3 -1.90 3.0 45 0.62 68 25.2 21.4 49 1.03 24 -0.29 46.6 29 -0.05 3.8 49 0.84 69 25.8 30.3 55 1.38 58 1.84 56.1 58 1.67 -4.5 4 -1.40 71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.32 74 22.6 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 24.8 22.6 45 0.80 29 0.00 47.4 33 0.09 2.2 39 0.40 76 25.3 24.7 50 1.09 40 0.50 50.0 46 0.56 0.6 29 -0.03 78 19.3 21.4 3 -2.35 24 -0.29 40.7 9 -1.12 -2.1 17 -0.76 80 24.9 17.0 46 0.86 5 -1.34 41.9 14 -0.91 7.9 59 1.94 81 21.6 17.4 9 -1.03 7 -1.24 39.0 17 -1.43 4.2 50 0.94 85 23.3 21.8 28 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 86 25.9 28.1 56 1.44 53 1.31 54.0 56 1.29 -2.2 13 -0.78 87 22.1 20.3 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.03 0.30 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2													-1.62
68		23.6	27.9	31		52		51.5		0.83	-4.3	6	-1.35
日													
71 23.4 20.6 30 0.00 18 -0.48 44.0 22 -0.53 2.8 43 0.57 72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.32 74 22.6 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 24.8 22.6 45 0.80 29 0.00 47.4 33 0.09 2.2 39 0.40 76 25.3 24.7 50 1.09 40 0.50 50.0 46 0.56 0.6 29 -0.03 78 19.3 21.4 3 -2.35 24 -0.29 40.7 9 -1.12 -2.1 17 -0.76 80 24.9 17.0 46 0.86 5 -1.34 41.9 14 -0.91 7.9 59 1.94 81 21.6 17.4 9 -1.03 7 -1.24 39.0 7 -1.43 42.2 50 0.94 85 23.3 21.8 28 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 86 25.9 28.1 56 1.44 53 1.31 54.0 56 1.29 -2.2 13 -0.78 87 22.1 20.3 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 98 20.4 21.1 6 -1.72 22 -0.36 41.5 13 -0.98 -0.7 26 -0.38 平均値(%) 23.3 22.8													
72 25.7 23.8 53 1.32 36 0.29 49.5 43 0.47 1.9 36 0.32 74 22.6 19.9 17 -0.46 15 -0.64 42.5 17 -0.80 2.7 42 0.54 75 24.8 22.6 45 0.80 29 0.00 47.4 33 0.09 2.2 39 0.40 76 25.3 24.7 50 1.09 40 0.50 50.0 46 0.56 0.6 29 -0.03 78 19.3 21.4 3 -2.35 24 -0.29 40.7 9 -1.12 -2.1 17 -0.76 80 24.9 17.0 46 0.86 5 -1.34 41.9 14 -0.91 7.9 59 1.94 81 21.6 17.4 9 -1.03 7 -1.24 39.0 7 -1.43 4.2 50 0.94 85 23.3 21.8 28 -0.06 26 -0.19													
75													
76 25.3 24.7 50 1.09 40 0.50 50.0 46 0.56 0.6 29 -0.03 78 19.3 21.4 3 -2.35 24 -0.29 40.7 9 -1.12 -2.1 17 -0.76 80 24.9 17.0 46 0.86 5 -1.34 41.9 14 -0.91 7.9 59 1.94 81 21.6 17.4 9 -1.03 7 -1.24 39.0 7 -1.43 4.2 50 0.94 85 23.3 21.8 28 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 86 25.9 28.1 56 1.44 53 1.31 54.0 56 1.29 -2.2 13 -0.78 87 22.1 20.3 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 98 20.4 21.1 6 -1.72 22 -0.36 41.5 13 -0.98 -0.7 26 -0.38 99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 平均値(%) 23.3 22.8 変動係数(%) 11.1 18.0				17									0.54
78													
80 24.9 17.0 46 0.86 5 -1.34 41.9 14 -0.91 7.9 59 1.94 81 21.6 17.4 9 -1.03 7 -1.24 39.0 7 -1.43 4.2 50 0.94 85 23.3 21.8 28 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 86 25.9 28.1 56 1.44 53 1.31 54.0 56 1.29 -2.2 13 -0.78 87 22.1 20.3 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 98 20.4 21.1 6 -1.72 22 -0.36 41.5 13 -0.98 -0.7 26 -0.38 99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 平均値(%) 23.3 22.8 46.0 変動係数(%) 11.1 18.0 5.95 3.42 変動係数(%) 11.1 18.0 12.9 668 Q1(15.5) 22.4 20.1 42.2 -2.1 Q2(30) 23.4 22.6 46.9 0.7 Q3(44.5) 24.8 25.8 47.0 7.5 5.0													
81 21.6 17.4 9 -1.03 7 -1.24 39.0 7 -1.43 4.2 50 0.94 85 23.3 21.8 28 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 86 25.9 28.1 56 1.44 53 1.31 54.0 56 1.29 -2.2 13 -0.78 87 22.1 20.3 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 98 20.4 21.1 6 -1.72 22 -0.36 41.5 13 -0.98 -0.7 26 -0.38 99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 平均値(%) 23.3 22.8 4.10 5.95 5.95 3.42													
85 23.3 21.8 28 -0.06 26 -0.19 45.1 25 -0.33 1.5 34 0.22 86 25.9 28.1 56 1.44 53 1.31 54.0 56 1.29 -2.2 13 -0.78 87 22.1 20.3 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 98 20.4 21.1 6 -1.72 22 -0.36 41.5 13 -0.98 -0.7 26 -0.38 99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 平均値(%) 23.3 22.8 4.10 5.99 5.95 3.42													
87 22.1 20.3 12 -0.75 16 -0.55 42.4 16 -0.81 1.8 35 0.30 93 22.1 23.1 12 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 98 20.4 21.1 6 -1.72 22 -0.36 41.5 13 -0.98 -0.7 26 -0.38 99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 平均値(%) 23.3 22.8 4.10 5.95 3.42 変動係数(%) 11.1 18.0 5.95 3.42 変動係数(%) 11.1 18.0 5.95 3.42 20.1 2.9 668 20.4 22.6 46.9 0.7 26 0.7 26 0.38 0.30 0.10 0.10 0.10 0.10 0.10 0.10 0.10													
93 22.1 23.1 12 -0.75 33 0.12 45.2 26 -0.31 -1.0 23 -0.46 97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 98 20.4 21.1 6 -1.72 22 -0.36 41.5 13 -0.98 -0.7 26 -0.38 99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 平均値(%) 23.3 22.8 46.0 0.5 3.42 0.5 3.42 0.5 3.42 0.5 0.5 3.42 0.5 0.668 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>-0.78</td>													-0.78
97 24.6 28.3 43 0.69 54 1.36 52.9 55 1.09 -3.7 8 -1.19 98 20.4 21.1 6 -1.72 22 -0.36 41.5 13 -0.98 -0.7 26 -0.38 99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 平均値(%) 23.3 22.8 46.0 0.5 3.42 0.5 3.42 0.5 3.42 0.5 3.42 0.5 0.5 3.42 0.5 0.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													
98 20.4 21.1 6 -1.72 22 -0.36 41.5 13 -0.98 -0.7 26 -0.38 99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 平均値(%) 23.3 22.8 46.0 0.5 0.6 0.5 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0													
99 23.6 25.8 31 0.11 45 0.76 49.4 42 0.45 -2.2 14 -0.78 平均値(%) 23.3 22.8 46.0 0.5 0.6 0.5 0.6 0.6 0.7 0.0 0.0 0.0 0.7 0.0 0.7 0.7 0.7 0.0 0.7 0.0													-0.38
標準偏差(%) 2.58 4.10 5.95 3.42 変動係数 (%) 11.1 18.0 12.9 668 $Q_1(15.5)$ 22.4 20.1 42.2 -2.1 $Q_2(30)$ 23.4 22.6 46.9 0.7 $Q_3(44.5)$ 24.8 25.8 49.7 2.9 $IQR = Q_3 - Q_1$ 2.4 5.7 7.5 5.0	99	23.6	25.8	31				49.4			-2.2		-0.78
変動係数 (%) 11.1 18.0 12.9 668													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$Q_2(30)$ 23.4 22.6 46.9 0.7 $Q_3(44.5)$ 24.8 25.8 49.7 2.9 $IQR = Q_3 - Q_1$ 2.4 5.7 7.5 5.0													
$Q_3(44.5)$ 24.8 25.8 49.7 2.9 $IQR = Q_3 - Q_1$ 2.4 5.7 7.5 5.0													
<i>IQR</i> = <i>Q</i> ₃ - <i>Q</i> ₁ 2.4 5.7 5.0													
$\sigma_1 = IQR \times 0.7413$ 1.74 4.19 5.52 3.71	$IQR = Q_{3} - Q_{1}$	2.4	5.7					7.5			5.0		
	$\sigma_1 = IQR \times 0.7413$	1.74	4.19					5.52			3.71		
$v_1 = (\sigma_1/Q_2) \times 100$ 7.44 18.5 11.8 530	$v_1 = (\sigma_1/Q_2) \times 100$	7.44	18.5					11.8			530		

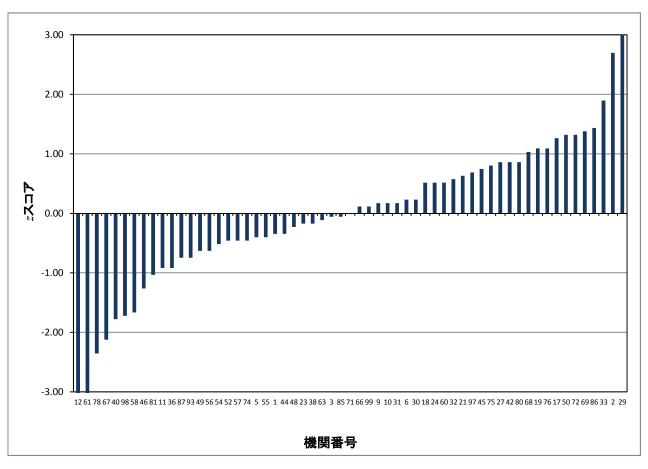


図 5.39 塑性限界(A試料)のzスコア

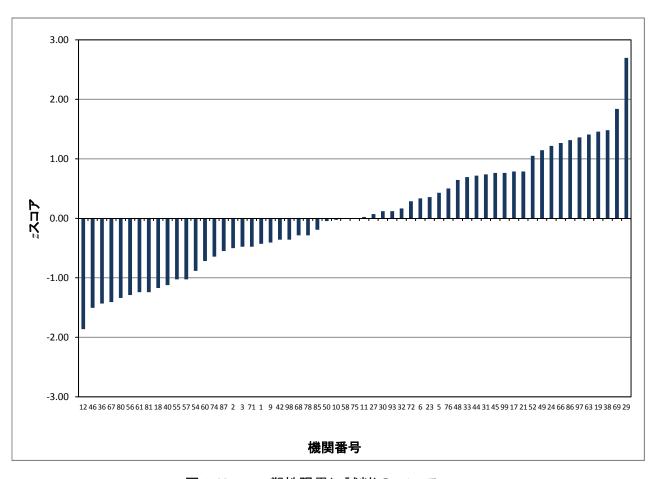


図 5.40 塑性限界(K試料)のzスコア

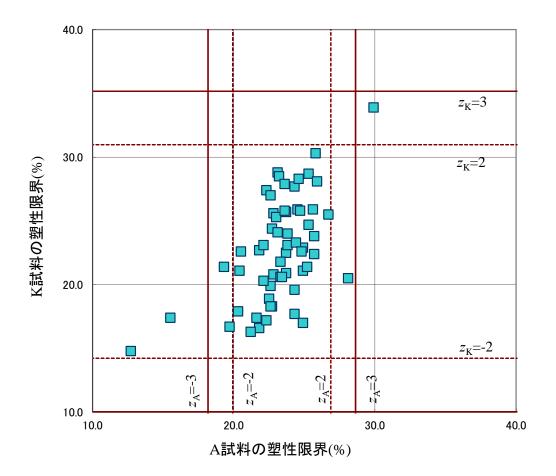


図 5.41 散布図による評価 (塑性限界)

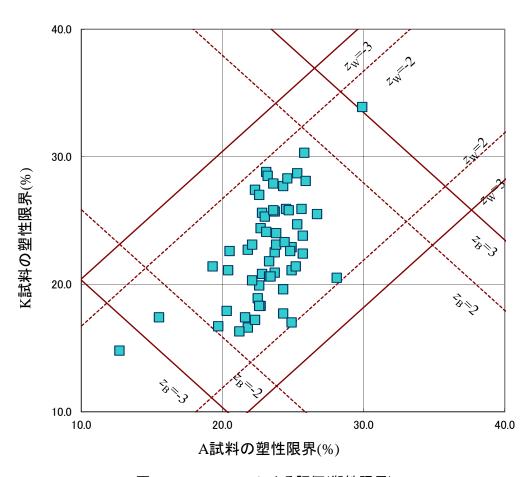


図 5.42 z_B, z_Wによる評価(塑性限界)

5.2 評価結果のまとめ

(1) 土粒子の密度

土粒子の密度試験結果を表 5.8 に示す。変動係数は、A 試料、K 試料それぞれ約 1% でよい精度である。四分位法による z スコアの結果によると、 $|z| \le 2$ の満足な範囲には A 試料が 54 機関、K 試料では 53 機関となっている。2 < |z| < 3 の疑わしい範囲には A 試料では 5 機関,50 概则,50 能则,50 概则,50 概则,50 概则,50 能则,50 能则,50

機関間の偏りと機関内のばらつきの評価結果を表 5.9 に示す。領域①(偏りもなく($|z_B| \le 2$),ばらつきもない($|z_W| \le 2$))に 46 機関で,その割合は 76.7%である。領域②(偏りやばらつきが疑わしい($2<|z_B|<3$, $2<|z_W|<3$ など))に 8 機関がある。領域③(小さい方に偏りがあり($z_B \le -3$),ばらつきも大きい($|z_W| \ge 3$)に 3 機関がある。領域④(小さい方に偏りがあるが($z_B \le -3$),ばらつきは小さい($|z_W|<3$))に 1 機関がある。領域⑥(偏りはないが($|z_B|<3$),ばらつきが大きい($|z_W|<3$))に 1 機関がある。領域⑦(偏りはないが($|z_B|<3$),ばらつきが大きい($|z_W|<3$))に 1 機関がある。

						1						
		四分位法による計算結果										
試料	中央値 Q_2	標準偏差 σ1	変動係数 ν1	カ係数 v1 zスコアによる評価(機関数)								
	(g/cm ³)	(g/cm ³)	(%)	z ≦ 2	2< z <3	3 ≦ z						
A試料	2.707	0.0287	1.1	54	5	1						
K試料	2.660	0.0306	1.1	53	3	4						

表 5.8 土粒子の密度試験結果と z スコアのまとめ

表 5.9 機関間の偏りと機関内のばらつきの評価のまとめ(土粒子密度)

		領域										
	1	2	3	4	5	6	7	8	9	10		
機関	46	8	3	1	0	1	1	0	0	0		

(2)含水比

含水比試験結果を**表** 5. 10 に示す。変動係数は、A 試料、K 試料とも 2%以下で、よい精度である。四分位法による z スコアの結果によると、 $|z| \le 2$ の満足な範囲に入るのは、A 試料では 49 機関、K 試料では 56 機関である。2 < |z| < 3 の疑わしい範囲には A 試料では 7 機関、K 試料では 2 機関、 $3 \le |z|$ の不満足の範囲には A 試料では 5 機関、K 試料では 3 機関となっている。

機関間の偏りと機関内のばらつきの評価の結果を表 5.11 に示す。領域①(偏りもなく($|z_B| \le 2$)、ばらつきもない ($|z_W| \le 2$))に入るのが 53 機関で,その割合は 86.9%である。領域②(偏りやばらつきが疑わしい($2 < |z_B| < 3$, $2 < |z_W| < 3$)など)に 3 機関,領域③(小さい方に偏りがあるが($z_B \le -3$),ばらつきも大きい($|z_W| \ge 3$)に 1 機関がある。領域④(小さい方に偏りがあり($z_B \le -3$),ばらつきは小さい($|z_W| < 3$))に 2 機関がある。領域⑥(偏りはないが($|z_B| < 3$),ばらつきが大きい($|z_W| \le 3$))に 1 機関がある。領域⑨(大きい方に偏りがある($|z_B| \ge 3$)が,ばらつきは少ない($|z_W| < 3$))に 1 機関がある。

表 5.10 含水比の試験結果と z スコアのまとめ

			四分位法に。	よる計算結果			
試料	中央値 Q_2	標準偏差 σ1	変動係数 ν1	zスコアによる評価(機関数)			
	(%)	(%)	(%)		2< z <3	3≦ z	
A試料	37.6	0.44	1.2	49	7	5	
K試料	49.9	0.82	1.6	56	2	3	

表 5.11 機関間の偏りと機関内のばらつきの評価のまとめ(含水比)

		領域									
	1	2	3	4	5	6	7	8	9	10	
機関	53	3	1	2	0	1	0	0	1	0	

(3)50%粒径

50%粒径の試験結果を表 5.12 に示す。変動係数は A 試料で 19.2%,K 試料で 31.4% と非常に大きい数値となっている。四分位法による z スコアの結果によると、 $|z| \le 2$ の満足な範囲に入るのは,A 試料で 50 機関,K 試料で 54 機関である。 2 < |z| < 3 の疑わしい範囲には A 試料で 3 機関,K 試料で 3 機関,K 試料で 3 機関。

機関間の偏りと機関内のばらつきの評価の結果を表 5.13 に示す。領域① (偏りもなく $(|z_B| \le 2)$) ばらつきもない $(|z_W| \le 2)$) に入るのが 46 機関で,その割合は 80.7%である。領域② (偏りやばらつきが疑わしい($2 < |z_B| < 3$, $2 < |z_W| < 3$)など)に 4 機関,領域⑥ (偏りはないが($|z_B| < 3$),ばらつきが大きい $(z_W \ge 3)$)に 2 機関がある。領域⑧ (大きい方に偏りがあり($z_B \ge 3$),ばらつきも大きい $(z_W \ge 3)$)に 3 機関がある。領域⑨ (大きい方に偏りがあるが $(z_B \ge 3)$,ばらつきは少ない($|z_W| < 3$))に 2 機関がある。

表 5.12 50% 粒径の試験結果と z スコアのまとめ

		四分位法による計算結果										
試料	中央値 Q_2	標準偏差 σ1	標準偏差 σ ₁ 変動係数 v ₁ zスコアによる評価(機関)									
	(mm)	(mm)	(%)	z ≦ 2	2< z <3	3 ≦ z						
A試料	0.0052	0.0010	19.2	50	3	6						
K試料	0.0026	0.0008	31.4	54	2	1						

表 5.13 機関間の偏りと機関内のばらつきの評価のまとめ(50%粒径)

		領 域									
	1	2	3	4	5	6	7	8	9	10	
機関	46	4	0	0	0	2	0	3	2	0	

(4)細粒分含有率

細粒分含有率の結果を**表** 5. 14 に示す。変動係数は、A 試料で 0.9%、K 試料で 2.2%と比較的小さな数値となっている。四分位法によるZスコアの結果によるZスコアの結果によると、Z0 両足な範囲に入るのは、Z1 大部本で 53 機関、Z2 大部本で 58 機関である。 Z3 の疑わしい範囲にはZ3 が疑りのみである。 Z3 にZ4 の範囲にはZ5 機関、Z5 機関、Z6 機関のみである。 Z5 機関、Z7 機関となっている。

機関間の偏りと機関内のばらつきの評価の結果を**表** 5. 15 に示す。領域①(偏りもなく($|z_B| \le 2$), ばらつきもない($|z_W| \le 2$))に入るのが 54 機関で,その割合は 91.5%である。領域②(偏りやばらつきが疑わしい($2 < |z_B| < 3$, $2 < |z_W| < 3$)など)に 3 機関,領域④(小さい方に偏りがあるが($z_B \le -3$),ばらつきは小さい($|z_W| < 3$))に 2 機関がある。

表 5.14 細粒分含有率の試験結果と z スコアのまとめ

		四分位法による計算結果										
試料	中央値 Q_2	標準偏差 σ1	変動係数 ν1	関数)								
	(%)	(%)	(%)	z ≦ 2	2< z <3	3 ≦ z						
A試料	88.7	0.82	0.9	53	1	5						
K試料	97.2	2.15	2.2	58	0	1						

表 5.15 機関間の偏りと機関内のばらつきの評価のまとめ (細粒分含有率)

		領域									
	1	2	3	4	5	6	7	8	9	10	
機関	54	3	0	2	0	0	0	0	0	0	

(5) 粘土分含有率

粘土分含有率の結果を**表** 5. 16 に示す。変動係数は、A 試料で 7.7%、K 試料で 8.6%である。四分位法による z スコアの結果によると、 $|z| \le 2$ の満足な範囲に入るのは、A 試料では 50 機関、K 試料では 56 機関である。2 < |z| < 3 の疑わしい範囲には A 試料で 6 機関、K 試料では 3 機関、 $3 \le |z|$ の不満足の範囲には A 試料で 3 機関となっている。

機関間の偏りと機関内のばらつきの評価の結果を**表** 5.17 に示す。領域①(偏りもなく($|z_B| \le 2$), ばらつきもない($|z_W| \le 2$)) に入る機関が 48 機関であり、その割合は 81.4%である。領域②(偏

りやばらつきが疑わしい($2<|z_B|<3$, $2<|z_W|<3$)など)に 6 機関、領域④(小さい方に偏りがあるが($z_B\leq -3$),ばらつきは小さい($|z_W|<3$))に 1 機関である。領域⑤ 小さい方に偏りがあり($z_B\leq -3$),ばらつきも大きい($z_W\leq -3$)に 1 機関がある。領域⑦(偏りはないが($|z_B|<3$),ばらつきが大きい,($z_W\leq -3$))に 3 機関がある。

表 5.16 粘土分含有率の試験結果と z スコアのまとめ

			四分位法に。	よる計算結果			
試料	中央値 Q_2	標準偏差 σ1	変動係数 ν1	zスコアによる評価(機関数)			
	(%) (%)		z ≦ 2	2< z <3	3 ≦ z		
A試料	49.4	3.82	7.7	50	6	3	
K試料	64.2	5.55	8.6	56	3	0	

表 5.17 機関間の偏りと機関内のばらつきの評価のまとめ(粘土分含有率)

		領 域									
	1	2	3	4	5	6	7	8	9	10	
機関	48	6	0	1	1	0	3	0	0	0	

(6)液性限界

液性限界試験の結果を**表** 5. 18 に示す。変動係数は、A 試料で 3.3%、K 試料で 4.0%と比較的小さい数値となっている。四分位法によるZスコアの結果によるZ、Z の満足な範囲に入るのは、Z A 試料で 51 機関、Z 試料で 56 機関である。 Z Z の疑わしい範囲には Z 試料では 7 機関、Z 試料では 2 機関、Z 3 の疑わしい範囲には Z 3 の疑わしい範囲には Z 3 の疑わしい。

機関間の偏りと機関内のばらつきの評価の結果を表 5.19 に示す。領域① (偏りもなく ($|z_B| \le 2$)、ばらつきもない ($|z_W| \le 2$))に入る機関が 47 機関で、その割合は 80.0% である。領域② (偏りやばらつきが疑わしい ($2<|z_B|<3$, $2<|z_W|<3$) など)に 9 機関で、領域⑥ (偏りはないが ($|z_B|<3$)、ばらつきが大きい ($z_W \ge 3$))に 1 機関がある。領域⑦ (偏りはないが ($|z_B|<3$),ばらつきが大きい ($|z_W|<3$))に 1 機関がある。領域⑨ (大きい方に偏りがあるが ($|z_B|<3$),ばらつきは少ない ($|z_W|<3$))に 1 機関がある。

表 5.18 液性限界の試験結果と z スコアのまとめ

			四分位法に。	よる計算結果		
試料	中央値 Q_2	標準偏差 σ1	変動係数 ν1	関数)		
	(%)	(%) (%)		z ≦ 2	2< z <3	3 ≦ z
A試料	45.4	1.52	3.3	51	7	1
K試料	59.6	2.37	4.0	56	2	1

表 5.19 機関間の偏りと機関内のばらつきの評価のまとめ(液性限界)

					領	域				
	1	2	3	4	5	6	7	8	9	10
機関	47	9	0	0	0	1	1	0	1	0

(7) 塑性限界

塑性限界試験の結果を表 5.20 に示す。変動係数は、A 試料で 7.4%、K 試料で 18.5% と試料による差が少し大きい。四分位法による z スコアの結果によると、 $|z| \le 2$ の満足な範囲に入るのは、A 試料で 53 機関、K 試料で 58 機関である。2 < |z| < 3 の疑わしい範囲には A 試料では 3 機関、K 試料では 3 機関のみとなっている。

機関間の偏りと機関内のばらつきの評価の結果を表 5.21 に示す。領域①(偏りもなく($|z_B| \le 2$)、ばらつきもない ($|z_W| \le 2$))に入る機関が 56 機関で、その割合は 94.9%である。領域② (偏りやばらつきが疑わしい ($2<|z_B|<3$, $2<|z_W|<3$) など)に 1 機関で、領域④ (小さい方に偏りがあるが ($z_B \le -3$),ばらつきは小さい ($|z_W|<3$))に 1 機関,領域⑨ (大きい方に偏りがあるが ($z_B \ge 3$),ばらつきは少ない ($|z_W|<3$))に 1 機関がある。

表 5.20 塑性限界の試験結果と z スコアのまとめ

	四分位法による計算結果						
試料	中央値 Q_2	標準偏差 σ1	変動係数 ν1	zスコアによる評価(機関数)			
	(%)	(%)	(%)	z ≦ 2	2< z <3	3 ≦ z	
A試料	23.4	1.74	7.4	53	3	3	
K試料	22.6	4.19	18.5	58	1	0	

表 5.21 機関間の偏りと機関内のばらつきの評価のまとめ(塑性限界)

					領	域				
	1	2	3	4	5	6	7	8	9	10
機関	56	1	0	1	0	0	0	0	1	0

6. アンケートの結果

技能試験全般に加え、土粒子の密度試験 (JIS A 1202), 含水比試験 (JIS A 1203), 粒度試験(沈降・フルイ分け) (JIS A 1204) (2mm以下)及び液性限界・塑性限界試験 (JIS A 1205)について、試験者の年齢、身分、経験年数(土質試験全般、該当する試験)、試験の頻度・実績、試験装置・器具の種類、日常点検・定期点検の頻度などを試験の実施に併せアンケートした。技能試験全般については、今回から例年行っていた「適切と思われる技能試験の実施時期」や「参加費」についての設問を削除した。ここ数年の技能試験におけるアンケート調査結果の動向から、試験の実施規模や収支についての確認ができつつあること、参加者からのご意見の試験運用への反映が困難であることによる。

アンケートの質問用紙を表6.1~6.5 に示し、各項目毎に集計結果を示す。なお、アンケートは、 今回の技能試験に参加した61機関から得た回答を集計している。なお、このうち、含水試験のみ参加及 び液性限界・塑性限界試験は辞退された機関があるため、個々の試験に対する参加機関数は異なる。

表 6.1 技能試験全般

アンケート (技能試験全般)

※回答は右のアンケート回答欄にご記載して頂きますようお願い致します。

【全機関共通(1)~(2)】

(1) 技能試験について

①技能試験をご存知でしたか? a.知っ	ていた b.知らなかった
「a. 知っていた」の場合, どこで何時	頁知りましたか?また、今回の技能試験に参加した理由も教えて下さい。
②今後も技能試験に参加したいと思いま	すか? a.参加したいb.特に参加したいと思わないc.どちらでもない
「b. 特に実施したいと思わない」の場合	合,その理由を教えてください。
	a.含水比 b.土粒子密度 c.粒度 d.液性限界/塑性限界
③今後、受けてみたい試験(複数回答可	e.最大密度/最小密度 f.湿潤密度 g.一軸 h.三軸 i.CBR
回っ 後, 支げ Cみたい 試験 (後数回台 F	j.締固め k.締固め+コーン指数 l.透水
	m.その他 ()

(2) 今回の技能試験結果の活かし方(複数回答可)

(E) THE PARENCE OF THE PROPERTY OF THE PROPERT						
①土粒子の密度試験	a.教育への反映 b.精度の確認 c. 試験技能の向上 d.研究資料 e. 営業活動					
①工松子の名及試験	f.活用しない/出来ない g.その他 ()					
②上の会セル 学験	a.教育への反映 b.精度の確認 c. 試験技能の向上 d.研究資料 e. 営業活動					
②土の含水比試験	f.活用しない/出来ない g.その他 ()					
②1.の特度対験 (対吸八杠)	a.教育への反映 b.精度の確認 c. 試験技能の向上 d.研究資料 e. 営業活動					
③土の粒度試験(沈降分析)	f.活用しない/出来ない g.その他 ()					
(人) (本世四日 - 神世四日計略	a.教育への反映 b.精度の確認 c. 試験技能の向上 d.研究資料					
④土の液性限界・塑性限界試験	e. 営業活動 f.活用しない/出来ない g.その他 ()					

【過去に技能試験を受けられた機関対象(3)】

(3) 技能試験の経験

(3) 坟胚試験の栓験		
①過去に受けた技能試験結果が品		a.役立った b.取り扱い方が分からなかった
上に反映出来てきましたか?あるか?	いいは役立らました	c.受けただけ
**	結果をどのように活用	しましたか?具体的にご記載ください。
②どのような技能試験を受けたか	, (1) ③の設問の選	択肢をお選びください。
【ので「。今水比」 も 土粒子密度	· 。 粉度 d 液性限界	/塑性限界 の回答が含まれる方の機関対象】
③試験者は前回と同じですか?	6. 位及 U. IX 压成外	/ 全国版作」 ジロ合か 日よ40のカジ版因内家』
	222 - 2222	
土粒子の密度試験	a.はい b.いいえ	
土の含水比試験	a.はい b.いいえ	
土の粒度試験 (沈降分析)	a.はい b.いいえ	
土の液性限界・塑性限界試験	a.はい b.いいえ	
④今回の技能試験において,過去	の技能試験結果や経験	:は活かされましたか? a.はい b.いいえ
「a.はい」の場合,改善した点が	あれば、具体的にお教	えください。
⑤前回より,技能試験結果 (zス:	コア等)が向上したと気	実感していますか a.はい b.いいえ c.どちらでもない
ご回答の要因について, コメントがあ	りましたら,御記載をお願り	いします。

【全機関共通(4)】

(4) 技能試験を実施したご感想(気を付けたこと・重要と認識したこと等)をご記載ください.

表 6.2 土粒子の含水比試験 アンケート (土粒子の含水比試験)

※回答は右のアンケート回答欄にご記載して頂きますようお願い致します。

(1) 試験者について

①身分	a.正社員・契約社員 b.アルバイト・パート・派遣社員 c.教員・技術職員 d.学生 e.その他
②年齢	a.20代以下 b.30代 c.40代 d.50代 e.60代以上
③経験年数	a.2年未満 b.2~5年 c.5~10年 d.10~30年 e.30年以上
④含水比試験の頻度	a. 初めて b. 年に数回 c. 月に数回 d. 调に数回 e. ほぼ毎日

(2) 試験方法について

①試料の保管方法	a.含水比変化防止処置を行って保管 b.搬入状態のまま保管 c.その他
②試料の量(1供試体当たり)	a.5g未満 b.5~10g c.10~30g d.30~100g e.100g以上
③炉乾燥時間	a.12時間未満 b.12~18時間 c.18~24時間 d.25時間以上
④室温になるまでの保管方法	a.デシケータ b.デシケータ+吸湿剤 c.室内 d.その他

(3) 今回の試験に使用された装置、器具について

1. はかり

1. (4/1-7)	
①ひょう量	a.500g未満 b.500~1,500g c.1,500~2,500g d.2,500~3,500g e.3,500g以上
②感量	a.0.0001g b.0.001g c.0.01g d.0.1g e.1g以上
③使用年数	a.2年未満 b.2~5年 c.5~10年 d.10~20年 e.20年以上 f.不明
④購入時検査	a. 実施 b.未実施または不明
⑤使用前点検	a.する b.しない
⑥校正	a.購入時のみ b.年1回 c.年2回 d.しない e.その他

2. その他使用器具

はかり以外で使用した器具がありましたら記入して下さい

(4) その他(お気づきの点等,何でもご記入下さい)

表 6.3 土粒子の密度試験

アンケート (土粒子の密度試験)

※回答は右のアンケート回答欄にご記載して頂きますようお願い致します。

(1) 試験者について

①身分	a.正社員・契約社員 b.アルバイト・パート・派遣社員 c.教員・技術職員 d.学生 e.その他
②年齢	a.20代以下 b.30代 c.40代 d.50代 e.60代以上
③経験年数(土粒子の密度試験)	a.2年未満 b.2~5年 c.5~10年 d.10~30年 e.30年以上
④土粒子の密度試験の頻度	a. 初めて b. 年に数回 c.月に数回 d. 週に数回 e.ほぼ毎日

(2) 試験方法について

①方法	a.乾燥法	b.湿潤法
②使用した水	a.蒸留水	b.イオン交換水 c.水道水 d.その他
③使用水の脱気方法	a.湯せん	b.減圧 c.湯せん+減圧 d.その他
④湯せん時間	a.10分未満	b.10~40分 c.40~120分 d.120分以上
⑤湯せん後、mbを測定するまでの時間	a.10分未満	b.10~30分 c.30~60分 d.60~120分 e.120分以上

(3) 今回の試験に使用された装置、器具について

1. はかり

①ひょう量	a.300g未満 b.300~500g c.500~1,000g d.1,000~3,000g e.3,000g以上
②感量	a.0.0001g b.0.001g c.0.01g d.0.1g e.1g以上
③使用年数	a.2年未満 b.2~5年 c.5~10年 d.10~20年 e.20年以上 f.不明
④測定環境	a.防振台使用 b.無対策 c.その他振動対策実施()
⑤購入時検査	a. 実施 b.未実施または不明
⑥使用前点検	a.する b.しない
⑦校正	a.購入時のみ b.年1回 c.年2回 d.しない e.その他

2. 容器

①種類	a.t゚クノメーター b.フラスコ c.その他
②容量	a.25ml b.50ml c.100ml d.200ml e.その他
③使用年数	a.2年未満 b.2~5年 c.5~10年 d.10~20年 e.20年以上 f.不明
④購入時検査	a. 実施 b.未実施または不明
⑤使用前点検	a.する b.しない
⑥校正	a.購入時のみ b.年1回 c.年2回 d.しない e.その他

3. 温度計

①タイプ	a. 棒状ガラス製(水銀) b. 棒状ガラス製(有機液体) c. デジタル
②適用範囲	a.0~50℃ b.0~100℃ c.0~250℃ (最も近いものを選んで下さい。)
③目量,感量	a.1°C b.0.5°C c.0.1°C
③使用年数	a.2年未満 b.2~5年 c.5~10年 d.10~20年 e.20年以上 f.不明
⑤購入時検査	a. 実施 b.未実施または不明
⑥使用前点検	a.する b.しない
⑦校正	a.購入時のみ b.年1回 c.年2回 d.しない e.その他

(4) その他 (お気づきの点等,何でもご記入下さい)

表 6.4 粒度試験 (2mm 以下)

アンケート (粒度試験・沈降分析)

※回答は右のアンケート回答欄にご記載して頂きますようお願い致します。

(1) 試験者について

①身分	a.正社員・契約	約社員 b.アルバイト・パート・派遣社員 c.教員・技術職員 d.学生 e.その他	
②年齢	a.20代以下 b	5.30代 c.40代 d.50代 e.60代以上	
③経験年	③経験年数(粒度試験) a.2年未満 b.2~5年 c.5~10年 d.10~30年 e.30年以上		
④粒度記	式験の頻度	a. 初めて b. 年に数回 c.月に数回 d. 週に数回 e.ほぼ毎日	

(2) 試験方法について

1.採取試料量

①乾燥質量か湿潤質量	a.湿潤質量 b.乾燥質量	
②試験に用いた乾燥質量	a.60g未満 b.60~80g c.80~110g d.110~120g e.120g以上	

2.ふるい分析

①ふるいの方法	a.手動 b.自動	り c.その他
②振とう時間(1フルイ目あたり)		a.1分未满 b.1分 c.1~3分 d.3~5分 e.5分以上
③振とう終了の目安	a.時間で規定	b.通過分の残留分に対する比率 c.目分量・感覚 d.その他

3.沈降分析

①試料の量 (乾燥質量)	a.40g未満 b.40~60g c.60~80g d.80~100g e.100g以上
②前処理(過酸化水素)	a.した b.しない
③分散剤の種類	a.ヘキサメタりん酸ナトリウム b.ピロりん酸ナトリウム
	c.トリポリりん酸ナトリウム d.その他()
④分散剤の量	a.10ml未満 b.10ml c.10~20ml d.20~30ml e.30ml以上
⑤分散装置	a.バッフル付の分散容器と攪拌翼の付いた攪拌機 b.バッフル無しの分散容器と攪拌翼の付いた攪拌機 c.ミキサーによる攪拌 d.手動による攪拌棒 e.その他(
⑥分散時間	a.1分未满 b.1分程度 c.1~3分 d.3~5分 e.5分以上
⑦試験場所	a.恒温室 b.恒温水槽 c.通常の部屋 d.その他
⑧水温の測定	a.室温 b.水槽内の水温 c.懸濁液の水温 d.その他

(3) 今回の試験に使用された装置、器具について

1. ふるい

1	
①購入時期	年 月(年間使用)
②購入時検査	a. 実施 b.未実施または不明
③使用前点検	a.する b.しない
④定期点検	a.する b.しない

2.浮ひょう

①測定範囲	a.0.995~1.050g/cm b.1.000~1.060g/cm c.1.000~1.200g/cm d.その他
②最小目量	a.0.001g/cm b.0.002g/cm c.0.005g/cm d.0.01g/cm d.その他
③使用年数	a.2年未満 b.2~5年 c.5~10年 d.10~20年 e.20年以上 f.不明
④購入時検査	a. 実施 b.未実施または不明
⑤使用前点検	a.する b.しない
⑥校正	a.購入時のみ b.年1回 c.年2回 d.しない e.その他

3. 温度計

①タイプ	a. 棒状ガラス製(水銀) b. 棒状ガラス製(有機液体) c. デジタル
②適用範囲	a.0~50℃ b.0~100℃ c.0~250℃ (最も近いものを選んで下さい。)
③目量, 感量	a.1℃ b.0.5℃ c.0.1℃
③使用年数	a.2年未満 b.2~5年 c.5~10年 d.10~20年 e.20年以上 f.不明
⑤購入時検査	a. 実施 b.未実施または不明
⑥使用前点検	a.する b.しない
⑦校正	a.購入時のみ b.年1回 c.年2回 d.しない e.その他

4. その他使用器具

浮ひょう、はかり、温度計以外で使用した器具がありましたら記入して下さい

(4) データ整理

① 粒径加積曲線の描き方	a.専用プログラム b.エクセル等の表計算ソフトにてスムーシング
	c.手書き(曲線定規を利用) d.手書き(フリーハンド) e.その他()

(5) その他(お気づきの点等,何でもご記入下さい)

表 6.5 液性限界 · 塑性限界試験

アンケート (液性限界・塑性限界試験)

※回答は右のアンケート回答欄にご記載して頂きますようお願い致します。

(1) 試験者について

①身分 a.正社員・契約	社員 b.アルバイト・パート・派遣社員 c.教員・技術職員 d.学生 e.その他	
②年齢 a.20代以下 b.1	80代 c.40代 d.50代 e.60代以上	
③経験年数(LLPL試験) a.2年未満 b.2~5年 c.5~10年 d.10~30年 e.30年以上		
④粒度試験の頻度	a. 初めて b. 年に数回 c. 月に数回 d. 週に数回 e. ほぼ毎日	

(2) 試験方法について

1.試料の裏ごし

①試料の準備	a.非乾燥法 b.空気乾燥法 c.炉乾燥法 d.注水 e.その他
②試料の裏ごし	a.金属製網ふるい425μm b.実施しない c.その他
2.液性限界試験	
①使用する水の種類	a.蒸留水 b.イオン交換水 c.水道水 d.その他
②試料の裏ごし後から 終了までの練返し時間	a.5分未満 b.5~20分 c.20~40分 d.40~60分 e.60~120分 f.その他
③1点測定してからの加水・練返し時間	a.1分未満 b.1~5分 c.5~10分 d.10~20分 e.20~30分 f.30分以上
④試料の厚さ	a.1cmより薄い b.1cm c.1cmより厚い
⑤試料の広さ	a.半分より狭い b.半分程度 c.半分より広い
⑥溝接合の判断方法	a.ゲージを使用する b.目視で判断 c.その他

3.塑性限界試験

①試料調整方法	a.空気乾燥法 b.炉乾燥法(110℃±5℃) c.炉乾燥(50℃程度)	d.紙などに挟む e.ドライヤーなど
②調整後の放置時間	a.1分未満 b.1~5分 c.5~10分 d.10~60分 e.60分以上	
③塑性限界の判断基準	a.3mm棒と比較する b.目視判断 c.その他	

(3) 今回の試験に使用された装置、器具について

1. はかり

①ひょう量	a.300g未満 b.300~500g c.500~1,000g d.1,000~3,000g e.3,000g以上
②感度	a. 0.0001g b.0.001g c.0.01g d.0.1g e.1g以上
③使用年数	a.2年未満 b.2~5年 c.5~10年 d.10~20年 e.20年以上 f.不明
④購入時検査	a.実施 b.未実施または不明
⑤使用前点検	a.する b.しない
⑥校正	a.購入時のみ b.年1回 c.年2回 d.しない e.その他
2ガニッセ	

2.ガラス板

①使用年数	a.2年未満 b.2~5年 c.5~10年 d.10~20年 e.20年以上 f.不明
②使用前点検	a.する b.しない
③液性限界使用時	a.ガラス板(滑らか面) b.ガラス板(すりガラス面)
④塑性限界使用時	a.ガラス板(滑らか面) b.ガラス板 (すりガラス面)

3. 液性限界試験機

①試験機	a. 手動 b. 自動
②使用年数	a.2年未満 b.2~5年 c.5~10年 d.10~20年 e.20年以上 f.不明
③購入時検査	a.実施 b.未実施または不明
④硬質ゴム台の点検	a.硬度測定器により年1回 b.硬度測定器により年2回 c.目視点検のみ d.しない e.その他
⑤黄銅皿の落下高の点検	a. する b.しない
⑥溝切りゲージの点検	a.する b.しない
⑦校正	a.購入時のみ b.年1回 c.年2回 d.しない e.その他
** UL PD ED 4 NEA ED #* AD #	

4.液性限界試験用黄銅皿(図-1)について

①黄銅皿の重量 (g)	
②黄銅皿の傾き A(mm)	
③黄銅皿の傾き B(mm)	

(4) その他 (お気づきの点等, 何でもご記入下さい)

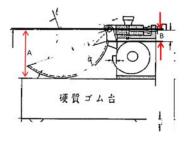


図-1 液性限界試験機

6.1 技能試験全般

本年度実施した技能試験の参加機関へのアンケートの回答から、参加機関の技能試験全般について の意見を以下にまとめる。

(1) 技能試験について

① 技能試験をご存知でしたか?

図 6.1 及び表 6.6 に設問(1)①の回答結果の集計を示す。今回、アンケートに回答した 61 機関のうち、92%にあたる 56 機関が「技能試験を知っていた」と回答している。表 6.6 から、技能試験を知っていた機関のうち、半数以上が例年あるいは過去に技能試験に参加した経験があり、今回の技能試験実施について既に社内で認知されていたか、学会からの案内メール、ホームページ閲覧や、外部機関からの勧誘により参加した機関も多数あったことが読み取れる。参加した多くの理由は、技術レベル向上・確認、精度確認といったコメントが多く、また、試験所認定の取得や、日本適合性認定協会における JIS Q 17025 の取得、JIS Q 17025 の維持管理を理由にしている機関も確認された。

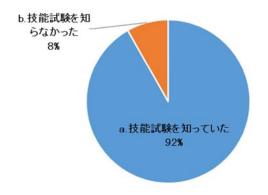


図 6.1 技能試験の認知度(回答 61機関)

表 6.6 技能試験の実施を知った時期と参加の理由

1 ++45=	##호두 ブ들면구! + 차 3 「
)① 技能記	t験をご存知でしたか?「a. 知っていた」の場合,どこで何時頃知りましたか?また、今回の技能試験に参加した理由も教えて下さい。 -
1	以前より参加しています。
3	地盤工学会のHP。精度の確認及び技能の向上。
5	メール配信にて。
6	毎年参加しているため。
9	以前に職場の上司に参加するよう勧められた際に知りました。試験の精度を確認するため。
11	関西地盤環境研究センターの案内。
12	毎回参加しているため。
18	JGS主催の技能試験は平成23年から参加している。今年の開催は,4月に昨年の参加機関に送信された案内メールで認識した。技能試験に参加する主な理由は,試験の品質確認および維 のためである。
19	地盤工学会誌。土質試験精度向上のため。
21	ホームページ。技量確認のため。
23	数年前に同じ技能試験を受験していた。各種試験結果のバラツキの大きさを相対的に確認するため、今回の技能試験に参加した。
26	6月ごろ。試験所認定を取得するため。
27	 昨年以前より技能試験に参加していた為。試験技量および精度の客観評価を行うことと、職員の試験技量の向上と教育訓練としてのスキルアップのために参加した。
29	地盤工学研究発表会での報告を聴講して、技能試験の実施を知った。
30	地盤工学会の広報。継続して参加している。
32	19281上チェンリム 40。 秘称して シテルしている。 195からの開催案内メールにて。 ごれまでも参加しているから。
33	案内メールを受信した時、以前から参加している為。
36	毎回参加している。他社との試験結果を比較し、当社の試験精度を知るため。
38	前回、参加していたので知っていた。
40	昨年の技能試験結果発表会にて。我社の試験能力を把握する旨。
42	昨年度以前も参加していたため、知っている。昨年は粒度分析結果が芳しくなかったため再度試験をうけた。
44	地盤工学会からのE-mailで、2017/4/25(火)に知った。試験技能レベルの自己分析・改善などに役立てるため、技能試験に参加した。
45	地盤工学会ホームページにて。社内事業計画の一環として、スキルアップのための施策、他社とクロスチェック。
46	毎年参加しており、試験精度の確認にもなるため。
48	地盤工学会の本、ならびにHPで知りました。今回の技能試験に参加した理由は、前回受けていたので今回も参加しました。
49	昨年先輩方がされているのをみて知った。自分の技能を知るため。
50	日本適合性認定協会でJIS Q 17025の取得で2011年6月頃。参加理由:JIS Q 17025の維持管理
51	職場の上司が毎年受けているのを聞き、知りました。試験を覚えたてなので、自分がどこまで良い数値を出せているか知りたかったから技能試験に参加しました。
54	今回、技能試験の実施のお知らせを頂いた。
55	技能試験を知っていたか:毎年のように参加していますので試験については如っていました(今年に関しては上司から聞きました)。参加理由:普段実施している試験の数値を客観的に 価するために参加させて頂いています。
56	社内で2015年ごろから。また、試験精度確認のため参加しました。
57	地盤工学会HP及び参加の案内より。当試験室の試験精度把握のため
58	地盤工学会からのメールで4月25日に知りました。当社の試験精度を確認するため。
61	毎年参加しているから
63	知り合いの人から案内があった。継続して試験結果の精度の向上を図るために参加した。
66	 去年も参加したので、情報を集めていた。LL・PLの試験値の違いについて知りたかった。
67	4年ほど前に弊社の社員より聞きました。自社の試験技術を確認するために参加しております。
68	昨年、大分県地質調査業協会で知りました。
69	前年度から毎年参加しているため、今回も参加した。
71	
	毎年参加しているため。
72	数年前に石川県土質研究協同組合(当時:現在は土質屋北陸)の担当者に本試験のことを聞いた。当社試験室の技能向上と試験精度確認のため。
74	平成24年度の技能試験から参加しています。試験精度の確認のため。
75	4月に案内メールをいただきまして、今回の技能試験を知りました。今回参加した理由といたしましては、毎年技能試験に参加しておりますので今回も参加することにいたしました。
76	6/14 メール案内でしりました。技能向上および当社技能確認のため、参加しました。
78	現在の職場に入った時から毎年参加させていただいていましたので現職場で知りました。自分の行った試験のデータをより多くのデータで客観的に見ることができると考えたからです。
80	地盤工学会誌。近年、毎年参加しており、技能確認のため。
81	地盤工学会機関紙。他機関との比較による試験精度の確認。
85	毎回受けさせていただいているので、今年も参加させていただきました。
86	技能評価のため。
87	以前より参加させていただいており、定期的な健康診断のように、自社の試験値を客観的にみてレベルを確認できるため。
	 弊社に入社してから知りました。昨年までは本社で参加していましたが、いろいろと勉強になるので今年度より支店でも参加することになりました。
93	
93 98	前回参加させていただきましたので、メールにて案内があり知ることができました。参加理由は、全国レベルとの比較による試験の見直し反省により、より良いデータを提出するため

② 今後も技能試験に参加したいと思いますか?

図 6.2 に設問(1)②の回答結果の集計を示す。92%にあたる 56 機関が「参加したい」と回答しており、かなりの機関で継続して参加する意思を持っていることがうかがえる。一方、「特に参加したいと思わない」と回答した機関は1機関であり、「どちらでもない」と回答した機関は、4機関 6%であった。「特に参加したいと思わない」に回答した1機関とその他1機関からのコメントは、「結果の評価が z スコア中心になっていて、他の視点を持っていないため」及び「今回、含水比試験のみの参加だったのと、試験所として代表の一人が技能試験に参加したので他の液塑性や粒度試験を他の試験員とともに参加したいと考えています」であった。

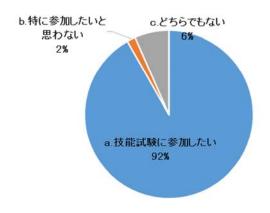


図 6.2 今後の参加の意思(回答 61 機関)

③ 今後, 受けてみたい試験項目について

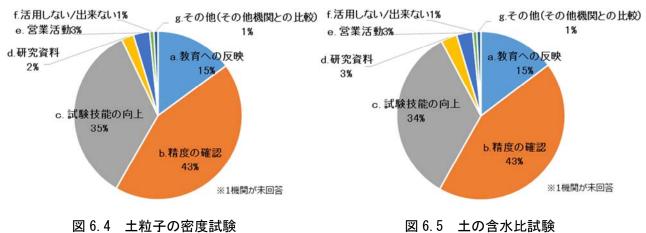

技能試験として今後希望する試験項目について複数回答をいただき,その集計結果を**図**6.3に示す。 例年と比べ大差はないが,締固め試験,CBR 試験,一軸圧縮試験,三軸圧縮試験,透水試験,液性限 界・塑性限界試験及び粒度試験がほぼ等分で上位を占めている。

図 6.3 今後希望する試験項目(回答 58 機関.回答数 252)

(2) 今回の技能試験の活かし方

図 6.4~図 6.7 に示す土粒子の密度,土の含水比,粒度及び土の液性限界・塑性限界試験の回答は,いずれも同様な傾向を示しており,試験精度の確認が全体の約4割,次いで,試験技能の向上,教育への反映と続いており,例年の傾向と大きく変わっていないようである。

凶 6.4 エ粒子の密度試験 (回答 60 機関,回答数 128)

図 6.5 土の含水比試験 (回答 60 機関,回答数 130)

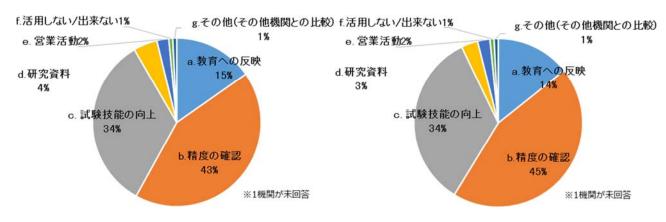


図 6.6 粒度試験(回答 60 機関,回答数 101)

図 6.7 土の液性限界・塑性限界試験 (回答 60 機関、回答数 101)

(3) 技能試験の経験

過去に技能試験を受けられた機関を対象に、「過去に受けた技能試験結果が品質向上や測定精度向上に反映出来てきましたか?あるいは役立ちましたか?」、「技能試験結果をどのように活用しましたか?」、「どのような技能試験を受けたか?」といった意識調査を行った。また、その中で、土粒子の密度試験、粒度試験及び突固めによる土の締固め試験の経験のある機関に限定し、「今回の技能試験において過去の技能試験結果や経験は活かされましたか?」、あるいは「前回より、技能試験結果(z スコア等)が向上したと実感していますか?」といった設問を設け、回答を取りまとめた。

品質向上や測定精度向上にむけての技能試験結果が役立ったか?

図 6.8 に回答結果を示す。技能試験結果が品質向上や測定精度向上に役立ったと回答した機関は、53 機関中 76%にあたる 30 機関に上った。この 30 機関を対象に、技能試験結果をどのように活用したかまとめたものが表 6.7 にまとめられている。例年、試験精度・品質の確認、技術向上が多いが、今

回目立つ項目は、他機関との比較や自社の試験装置・方法の確認が目立っている。

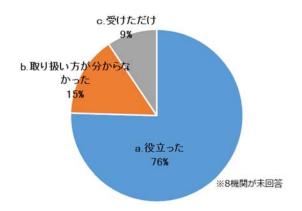


図 6.8 技能試験結果の意識(回答 53機関)

表 6.7 技能試験結果の具体的な役立て方

(3)① 技能	表 6. / 技能試験結果の具体的な役立て万 試験結果を品質向上や測定精度向上に反映出来ましたか?あるいは役立ちましたか?「a. 役立った」の場合、技能試験結果をどのように活用しましたか?具
体的にご記載	
5	結果が他機関の結果と多少ずれがあったことがわかり、原因を究明することができた。
6	他の機関のアンケート結果を参考に方法を工夫した。
9	他の試験機関とくらべることによって試験精度の確認を行った。
10	スコアの良くなかった試験の再試験を実施。原因を追究し改善、その後の試験の精度向上へと繋がった。
12	精度の再確認
18	技能試験の結果から参加した試験者の技量をはかり、部署内の品質保持や向上につながるように活用した。
19	営業活動に役立てている
21	技量の確認
24	品質向上、測定精度向上に役立った
27	技能試験結果を基に、実施試験ごとに期間内および機関間のZスコアの確認と自機関の結果を比較し、試験実施上の留意点を再確認した。
29	試験技能レベルの確認に活用した。
33	自社と他機関との比較
40	過去に於いて技能試験に参加し参加会社でどの位のレベルに有るかが判り、中間より下位に属する試験については見直し、再教育等に参考となった。
42	塑性試験の3mmサンプル作製時の含水比加減(どの程度バラバラになるまで行うか)を調整した。
44	品質向上や測定精度向上に活用した。
46	試験精度の確認になった。
48	土質試験の浅い技術員に改めて技術試験の向上と全国の試験機関との差を確認することができた。
49	値が他社と離れている試験方法を再度確認した。
50	教育への反映,精度の確認,試験技能の向上
54	技能試験結果と当社の試験値との差異を確認できることで 試験者各自の自信と反省につながった。また、試験方法、道具や装置に関しても他社の様子も
	確認できとても参考になった。 客観的に試験値を評価されることで緊張感を保てる。また複数の機関が同一試料を試験することで、個人差によるバラツキを排除して再現性の高い平均的
55	各部のに到来して計画されることで来来がで味てる。よん後数の機関が同一部件で到来することで、個人差によるパプライで排除して再発性の同い干が可な値を出すことが重要だと感じる。
58	試験毎の精度の向上に役立った。
60	その他機関との比較
61	精度の確認
63	試験結果を研究室内で公表し,問題点を列挙して改善に取り組んだ。
67	他社と比較することにより、現在の方法で良かったかを確認できた。
69	品質向上や他試験機関との測定精度の確認
71	試験方法の再確認ができました。
72	沈降分析結果が平均値からやや外れた結果を検証したところ、浮標の検定値入力にミスが見つかった。
76	社内教育で、試験の注意点や誤差の原因について議論した。
78	自分の試験結果と他の試験結果とを比較しどういう傾向にあるのか、またその傾向をどのように修正すればより良い結果を求めることができるか検討する
70	ことができました。
80	ある程度の精度の確認になった。
81	
85	試験精度や試験技術を再確認することができた。
87	本来の値と比較することで、試験の精度等を確認できた。
99	試験方法の確認、改善

② どのような技能試験を受けたことがあるか?

過去の技能試験参加歴をお伺いした設問であるが、図 6.9 の通りの集計結果となった。実施母体につては不明であるが、53 機関の回答中 10%以上の試験項目は、含水比、土粒子密度、粒度、液性限界・塑性限界、最大密度・最小密度、湿潤密度及び一軸であり、当委員会が実施してきた技能試験も中に含まれているものと推察される。また、図 6.3 における今後技能試験を受けてみたい試験項目とも重なる試験が多く、引き続き技能試験を実施したい意図もうかがえる。

図 6.9 過去の技能試験において経験した試験(回答 53 機関,回答数 319)

③ 試験者は前回と同じですか?(②で土粒子密度, 粒度及び締固め試験の回答が含まれる方の機関対象)

今回実施した技能試験において、土粒子の密度、土の含水比、粒度及び土の液性限界・塑性限界試験の経験のある機関を対象に、前回と試験者が同一であったかどうかの設問を設けた。上記4試験について、図6.10~13 それぞれ回答集計結果を示す。土粒子の密度試験と粒度試験については、約6~7割の機関において、同じ試験者が今回の技能試験に臨んでいることがわかる。

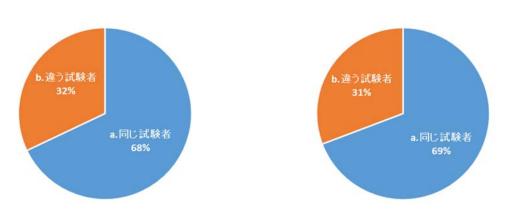


図 6.10 土粒子の密度試験(回答 53 機関) 図 6.11 土の含水比試験(回答 52 機関)

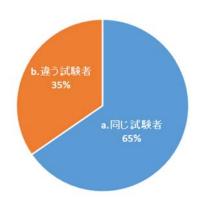


図 6.12 粒度試験(回答 52 機関) 図 6.13 土の液性限界・塑性限界試験(回答 48 機関)

④ 今回の技能試験において、過去の技能試験結果や経験は活かされましたか?

今回の技能試験において過去の経験が活かされたと回答している機関は、図 6.14に示す通り 71% にあたる36機関と昨年度の56%を大幅に上回る結果となった。表6.8を見ると、試験装置の動作確 認や試験手順に気遣ったコメントが多いことが分かる。

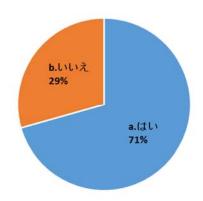


図 6.14 過去の技能試験経験の意義(回答 51 機関)

表 6.8 過去の技能試験経験の活かし方

(4)④ 今回(D技能試験において,過去の技能試験結果や経験は活かされましたか?「a.はい」の場合,改善した点があれば,具体的にお教えください.
5	土粒子密度は煮沸時間を2h以上とした。
6	試験方法を今一度見直して、土粒子密度の煮沸時間を長くした。
9	試験への習熟が深まり、より正確に試験が行えるようになった。
12	試験方法の再確認
27	試料の搬入後ただちに追加密封し試料の状態の変化をできるだけなくした。
29	過去の試験結果から、他試験所の結果と大きく外れていないことを確認できており、従来どおり実施したため、改善した点は特になし。
32	使用機器の校正を直前に実施するなど、精度に気をつけています。
38	沈降試験を乾燥状態で行っていたが湿潤の状態で行うようになった。
40	地盤工学会の基準(試験方法)にて行って要るので特に無し。
42	塑性試験の3mmサンブル作製時の含水比加減(どの程度バラバラになるまで行うか)を調整した。
44	塑性限界試験試料が乾燥しすぎないように注意した。
48	作業速度が前回より上がった。
49	社内で勉強会を開き試験方法を再確認した。
50	前回は湿潤土を乾燥させた状態で土粒子の密度試験を行っていたが、今回は湿潤状態で試験を行った。
58	同じ試料を用いて経験年数の少ない者にも同様の試験を実施してもらい、技能試験報告書と比較して試験精度向上に努めています。
63	事前に試験方法等を確認し、注意すべきことを意識して試験に取り組んだ。
67	試験員による個人差をなくすため、定期的に社内での講習や情報交換を実施しています。
71	試験方法、試験器具の比較ができました。
72	沈降試料作成用の攪拌機の見直し等。
76	煮沸時間を長くした。蒸留水を使用した。
78	塑性限界が含水比が低めの傾向にあったので限界の見極めを注意をするようにした点です。
87	試験データの有効数値,試験機の精度の見直し等
93	試料分取が均一になるよう注意し、慎重に進めた。
99	測定、試験方法の再確認

⑤ 前回より、技能試験結果(Z スコア等)が向上したと実感していますか?

図 6.15 に示す回答集計結果では、明確に試験結果の向上が実感できたと回答した機関は 14 機関 27%程度であり、どちらでもないとの回答が 71%にあたる 37 機関と多数を占めた。この傾向は昨年度と概ね同様である。また、表 6.9 に今回の技能試験で気をつけた点についての回答をまとめ示すが、今回のアンケートから、技術的なコメントは見当たらなかった。

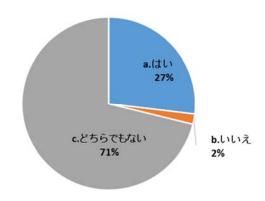


図 6.15 技能試験結果向上の実感(回答 52機関)

表 6.9 技能試験結果(Zスコア等)が向上したと思われる点

⑤ 前回	⑤ 前回より,技能試験結果(zスコア等)が向上したと実感していますか?(a.はい \cdot b.いいえ \cdot c.どちらでもない)ご回答の要因について,コメント	
がありま	がありましたら,御記載をお願いします。	
前回の技能試験は、塑性限界試験が非常に忙しい時に、技能試験を行った		前回の技能試験は、塑性限界試験が非常に忙しい時に、技能試験を行ったため、zスコアが悪かった。今回の技能試験はゆとりのある日に
44	a	実施した。
72		提携する他機関との同一試料による確認試験の回数を大幅に増やし、試験誤差の縮小が明瞭となっている。
27		特にありません。
32	С	配布資料のばらつきがきになっており、結果はあくまでも参考程度にとらえています。
50		前回と似た様な試料だが、試験値が前回と異なるため。
61		試験者として参加するのは初めてなのでわからない。

(4) 技能試験を実施したご感想(気を付けたこと・重要と認識したこと等)

表 6.10 に示す。感想は各試験機関で様々であるが、同一機関内で複数の試験者による実施の意向があり、より多くの試料配付を希望される機関も見受けられる。

表 6.10 技能試験の感想(気を付けたこと・重要と認識したこと等)

(4) 技能試	験に参加したご感想(気を付けたこと・重要と認識したこと等)を御記載ください.
1	特になし
2	日々の業務として実施している試験を技能試験を受験することにより、今一度、試験方法、手順など初心に立ち戻ることができたことが良かった。
6	試料の量をもっと増やしてほしい(倍程度)。試験方法、データの見直しにもう少し時間がほしい、全体に1カ月程度。
9	なるべくいつも通り試験を行うことによって、他の試験機関との精度の差を確認できるように試験を行った。
11	Zスコアだけでなく多方面から試験結果を評価することで、よりよい試験が得られるのではないかと存じます。
24	水中の気泡の脱気など気をつけた
26	今回、含水比のみの参加だったので試料が問題なく足りましたが、すべての試験を行うと1kgだとかなりギリギリで1回の試験しかできません。今後、教育指導のために複数人での試験を行いたいと考えています。その場合は試料を多く頂きたいです。
27	試験技術と精度の対外評価(相対評価)と技量の維持向上とした教育訓練と、技術の伝承を意識し若手職員に参加させました。 あえて意見するならば、試験試料ですが過去に参加した際も、猛暑時にダンボールに入れ宅急便に僅かの養生材に包み配布されますが、箱が温まり日向に置かれ配送されたことがありました。発泡スチロールなどの断熱材を用いるなどご配慮いただければ幸いです。(決して安価な参加料の技能試験ではないと思いますので。)
30	土質試験法を再認識できた。
32	試験手順について、改めて赤本を読むなど、精度向上に取り組んでいます。
38	試験方法の再確認ができた。
44	高品質の土質試験結果をクライアントに提供するためには、自社の土質試験結果を全国の試験機関と比較して、客観的に判断し、必要に応じて試験技術や試験環境の改善につなげることが、重要であると認識して、技能試験に取り組んだ。
45	技能試験という観点から、星印の実施時の留意点の記述は、試験のチェック事項であり、データ収集以外であれば最後のアンケートで確認するのがよいと思います。データシートの統一については良いと思いますが、測定値、計算結果の桁合わせは必要
49	試料Kの液塑性にてこずってしまった。どの試料もスムーズにこなせるよう経験を積み技術を身につけていきたいと思う。
50	精度を重視し、含水比試験を出来る限り早めに行った。
51	入社して三ヶ月、粘土系の試料を経験をしていなかったので、とても良い経験になりました。 素人なので、もう少し試料の量がほしかったです。
52	緊張感を持って,よく注意を払いながら試験に取り組めたと思う. 今回の結果を参考に,技術向上のに活かしたい.
54	技能試験だと言って、気張らず 通常通りのやり方で進めようと思いました。普段行っている試験方法が 技能試験の結果とどれだけの差異があるのか注目したいです。
55	(地盤材料試験の方法と解説に記載されている煮沸時間と土粒子の密度の関係図で3時間ぐらいで値が安定してくるため) 他の試験機関より長ければ、土粒子の密度の値が大きくなる可能性があるのが少し心配です。
57	特に技能試験であると考えず、いつも通りに行うことを意識しました。
61	特になし
67	技能試験だということを意識せず、通常の業務と同じように試験をするように努めました。
72	液塑性の含水測定を3桁で実施したが、提出用に2桁とした場合、誤差が大きくなってしまう。WLに大きな差は出ないが、Ifに 明瞭な違いが出てしまう。
75	改めて自分が行ってきた試験について見つめ直すことができる良い切っ掛けなりました。
76	沈降分析の前処理で、炉乾燥中に噴きこぼれても良いように、ビーカーの下に容器を敷いた。 土粒子の密度試験の湿潤法は、ピクノメーターに試料を入れるのに入れづらい。
81	試料到着から結果の送付までの期間が短すぎます、もう少し余裕もって実施したいです。
86	試験方法、条件など、注意しないといけない部分を再認識した。
93	試験の取り掛かり(試料準備等)で試験結果が大きく左右されてしまうことがあるので、最初から最後まで丁寧に取り組むことをがけました。
99	試験精度に特に気を付けた。

6.2 土粒子の密度試験

土粒子の密度試験に関するアンケート集計結果を以下に示す。1 機関で回答を得られず,回答機関は 60 機関であった。

6.2.1 試験者について

図 6.16~図 6.17 に、試験者の身分、年齢、経験等に関する結果をそれぞれ示し、要点を以下にまとめる。なお、試験者について、1機関で試料毎に試験者が異なっていたため、回答数は 61 であった。

- ・ 試験者の身分は、図 6.16 によると、「正社員・契約社員」が 75%と最も多く、「アルバイト・パート・派遣社員」が 17%、「教員・技術職員」が 4%、「学生」が 3%、「その他」が 1%であった。
- ・ 試験者の年齢は、図 6.17 によると、20 歳代以下~60 歳代以上の範囲において、「40 代」が30%と 最も多く、「30 代」が26%、「20 代」が25%、「50 代」が16%、「60 代以上」が3%であった。
- ・ 試験者の土粒子の密度試験の経験年数は、図 6.18 によると、「10~30 年」が 38%と最も多く、「2~5 年」が 29%、「2 年未満」と「5~10 年」が共に 15%、「30 年以上」が 3%であった。
- ・ 試験者の土粒子の密度試験の頻度は、図 6.19 によると、「週に数回」と「ほぼ毎日」が共に 33%、「月に数回」が 24%、「年に数回」が 10%であった。「週に数回」と「ほぼ毎日」で 2/3 を占めた。

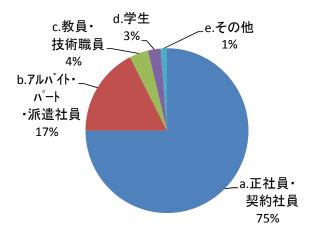


図 6.16 身分

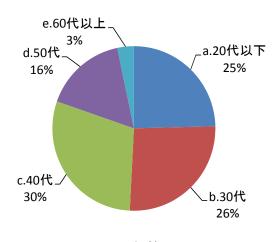


図 6.17 年齢

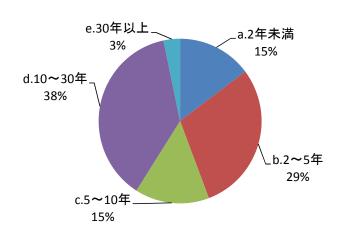


図 6.18 経験年数(土粒子の密度試験)

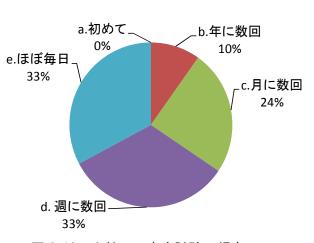
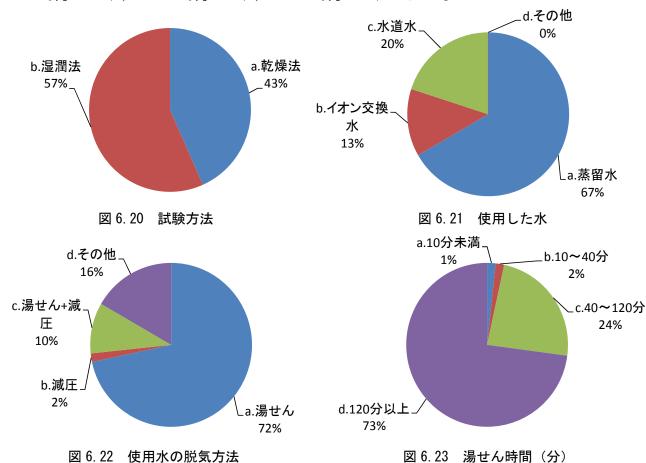
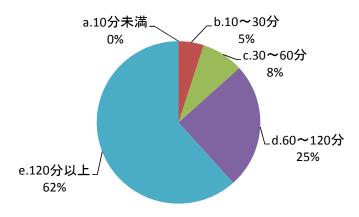
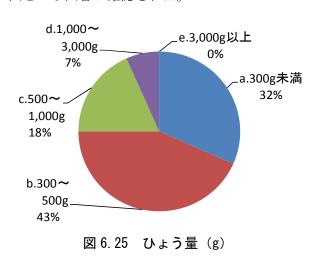



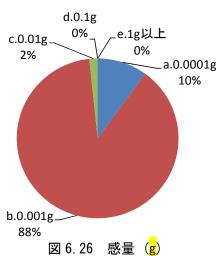
図 6.19 土粒子の密度試験の頻度

6.2.2 試験方法について

図 6.20~図 6.24 に, 方法, 使用水, 使用水の脱気方法, 湯せん時間及び mb を測定するまでの時間 に関する結果を以下に示す。回答機関は 60 機関であった。ただし, 湯せん時間について, 1 機関が無効 回答のため, 回答数は 59 機関であった。

- ・ 試験方法は、図 6.20 によると、「湿潤法」が 57%、「乾燥法」が 43%であった。
- ・ 使用した水は、図 6.21 によると、「蒸留水」が 67%、「水道水」が 20%、「イオン交換水」が 13% であった。規格では、「蒸留水」を使用することとなっている。「イオン交換水」は広義で「蒸留水」であることから、80%の機関で規格どおりであった。
- ・ 使用水の脱気方法は、図 6.22 によると、「湯せん」が 72%と最も多く、「湯せん+減圧」が 10%、 「減圧」が 2%、「その他」が 16%であった。
- ・ 湯せん時間は、図 6.23 によると、「120 分以上」が 73%と最も多く、「40~120 分」が 24%、「10~40 分」が 2%、「10 分未満」が 1%あった。規格では、「煮沸時間は、一般の土で 10 分以上」とある。99%の機関で 10 分以上煮沸を行っていた。
- ・ 湯せん後 mb を測定するまでの時間は、図 6.24 によると、「120 分以上」が 62%と最も多く、「60 ~120 分」が 25%、「30~60 分」が 8%、「10~30 分」が 5%であった。


図 6.24 湯せん後 mb を測定するまでの時間(分)

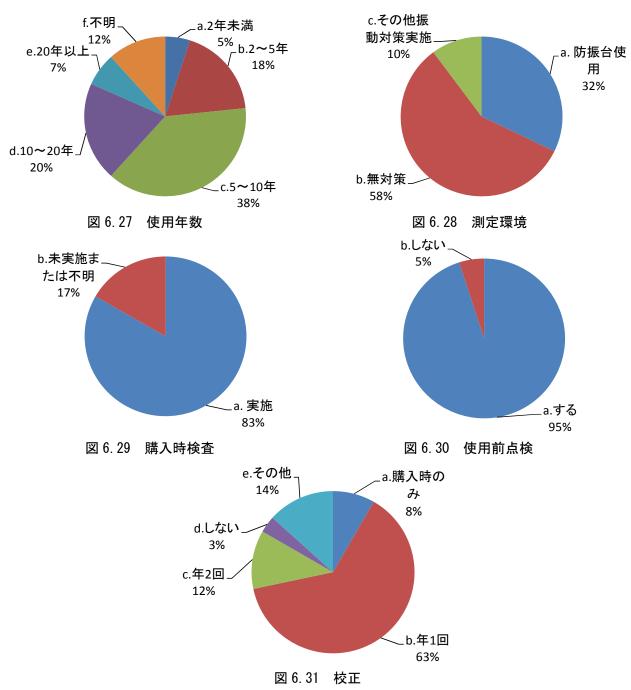
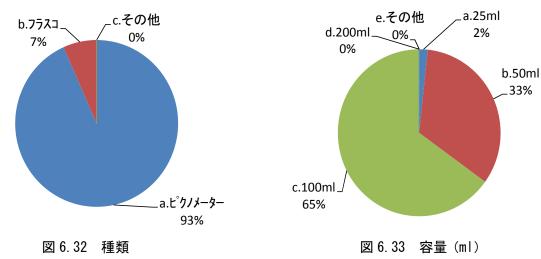
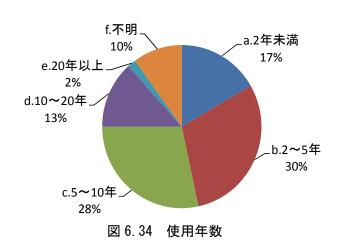
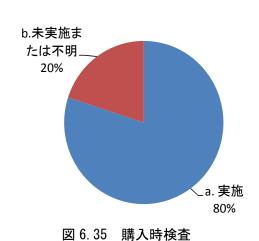

6.2.3 はかりについて

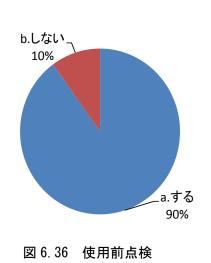
図 6.25~図 6.31 に,はかりのひょう量,感量,使用年数,購入時検査,使用前点検,校正に関する結果を以下に示す。回答機関数は60機関であった。

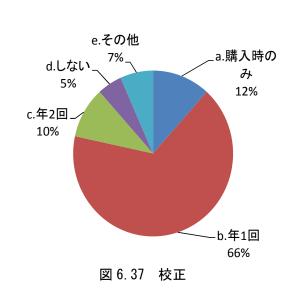
- ・ はかりのひょう量は、図 6.25 によると、「 $300\sim500$ g」が 43%、「300g 未満」が 32%、「 $500\sim1,000$ g」が 18%、「 $1,000\sim3,000$ g」が 7%であった。75%の機関で 500g 未満のひょう量のはかりを使用した。
- ・ はかりの感量は、図 6.26 によると、「0.001g」が 88%、「0.0001g」が 10%、「0.01g」が 2%であった。規格では、「はかりは、0.001g まではかることができるもの」とある。98%の機関で、0.001g 以下の感量のはかりを使用していた。
- ・ はかりの使用年数は、図 6.27 によると、「5~10 年」が 38%と最も多く、「10~20 年」が 20%、「2~5 年」が 18%、「20 年以上」が 7%、「2 年未満」が 5%であった。「不明」が 12%となっており、当該機関の人員の入れ替わりによりよるものと推察される。
- ・ はかりの測定環境は、図 6.28 によると、「無対策」が 58%で最も多く、「防振台使用」が 32%、「その他の防振対策」が 10%であった。「その他の防振対策」では、一部で風防が確認された。
- ・ はかりの購入時検査は、**図 6.29** によると、83%の機関で実施していた。
- 使用前点検は、**図 6.30** によると、95%の機関で実施していた。
- ・ はかりの校正は、**図 6.31** によると、「年 1 回」が 63%と最も多く、「年 2 回」が 12%、「購入時のみ」が 8%、「しない」が 3%で、「その他」は 14%であった。「その他」では、一部で 2 年に 1 回という回答が確認された。

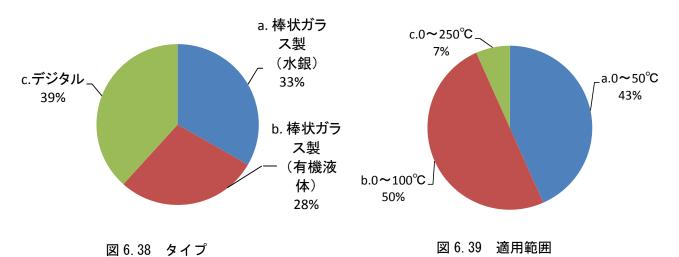


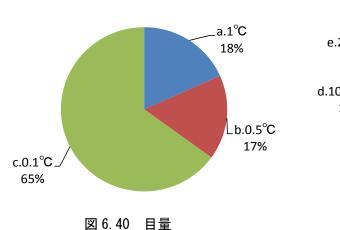

6.2.4 容器について

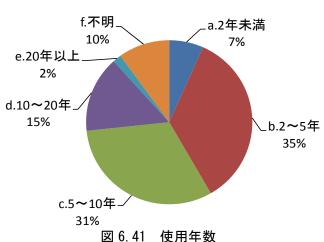

図 6.32~図 6.37 に,容器の種類,容量,使用年数,購入時検査,使用前点検,校正に関する結果を以下に示す。回答機関数は60機関であった。

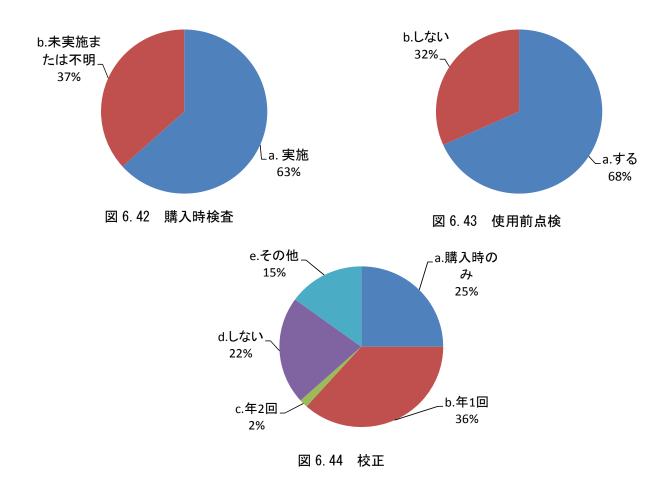

- ・ 容器の種類は、図 6.32 によると、「ピクノメーター」が93%で最も多く、「フラスコ」が7%となり、ほとんどの機関で「ピクノメーター」を使用していた。
- ・ 容器の容量は、図 6.33 によると、「100ml」が 65%と最も多く、「50ml」が 33%、「25ml」が 2% であった。規格では、「ピクノメーターは JIS R 3503 に規定する呼び容量 50ml 以上のゲーリュサック形の比重瓶、若しくは JIS R 3505 に規定する呼び容量 100ml 以上の全量フラスコ、又はこれらと同等の機能をもつもの」とある。98%の機関で「50ml」もしくは「100ml」の容器を使用していた。
- ・ 容器の使用年数は、図 6.34 によると、「2~5 年」が 30%と最も多く、「5~10 年」が 28%、「2 年未満」が 17%、「10~20 年」が 13%、「20 年以上」が 2%、「不明」は 10%であった。


- 容器の購入時検査は、**図 6.35** によると、80%の機関で実施していた。
- 容器の使用前点検は、図 6.36 によると、90%の機関で実施していた。
- ・ 容器の校正を、図 6.37 によると、「年1回」が最も多く66%、「購入時のみ」が12%、「年2回」が10%、「しない」が5%であった。76%の機関で年1~2回の頻度で、容器の校正を実施していた。






6.2.5 温度計について

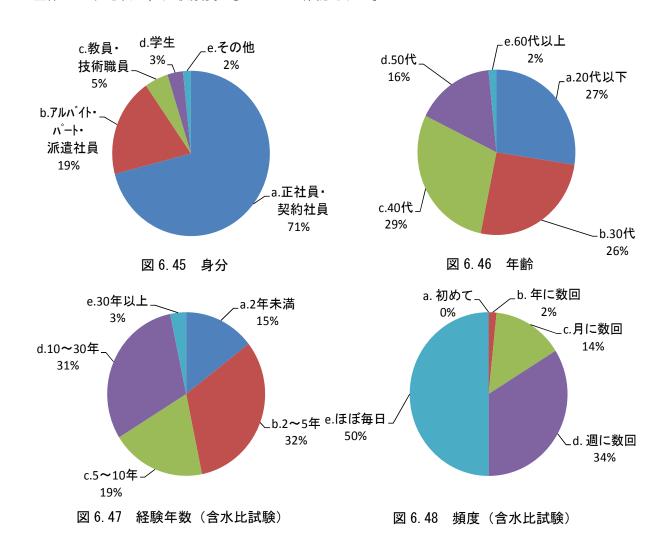

図 6.38~図 6.44 に, タイプ, 適用範囲, 目量, 使用年数, 購入時検査, 使用前点検, 校正に関する結果を以下に示す。回答機関数は 60 機関であった。

- ・ 温度計のタイプは、**図** 6.38 によると、「デジタル」が 39%、「棒状ガラス製(水銀)」が 33%、「棒状ガラス製(有機液体)」が 28%であった。
- ・ 温度計の適用範囲は、図 6.39 によると、「0~100℃」が 50%、「0~50℃」が 43%、「0~250℃」 が 7% であった。
- ・ 温度計の目量は、図 6.40 によると、「0.1℃」が 65%と最も多く、「1℃」が 18%、「0.5℃」が 17% であった。規格では、「最小目盛が 0.5℃または 0.1℃のもの」とある。82%の機関が規格どおりの 温度計を使用していた。
- ・ 温度計の使用年数は、図 6.41 によると、「2~5年」が35%と最も多く、「5~10年」が31%、「10~20年」が15%、「2年未満」が7%、「20年以上」が2%、「不明」が10%であった。
- ・ 温度計の購入時検査は、**図 6.42** によると、63%の機関で実施していた。
- 温度計の使用前点検は,**図**6.43によると,68%の機関で実施していた。
- ・ 温度計の校正は、図 6.44 によると、「年1回」が 36%、「購入時のみ」が 25%、「しない」が 22%、「年2回」が 2%で「その他」が 15%あった。「その他」では、一部で 2年に1回が確認された。

6.2.6 その他

6.2.1~6.2.5 で取りまとめた設問以外にご意見を頂いた。内容は「技能試験実施上の留意点の補足」,「アンケートの回答への補足」,「試験方法,点検・検査・校正の方法についての疑問」であった。以下に内容を示す。

- ・ 水道水を脱気した場合と、蒸留水を脱気した場合の違いを知りたい。(06)
- ・ 使用水の脱気方法は、超音波洗浄機で超音波照射の後、湯せんしています。 (32)
- ・ 今回の試料は粘性土のため、湯せんの時間をどの程度すればよいのか判断が難しかった。(42)
- ・ 湯せん容器に蓋をして、蒸気圧を利用して、ピクノメーター内の空気を完全に追い出すように努めた。 (44)
- ・ ピクノメーター外部に付着した水を完全に除去するように注意した。 (44)
- ・ 試験機の購入時検査,使用前点検,校正がどのような行為なのかを知りたい(74)


6.3 含水比試験

含水比試験に関するアンケート集計結果を以下に示す。回答機関数は61機関であった。

6.3.1 試験者について

図 6.45~図 6.48 に, 試験者の身分, 年齢, 経験, 試験頻度に関する結果をそれぞれ示し, 要点を以下にまとめる。なお, 試験者について, 1機関で試料毎に試験者が異なっていたため, 回答数は 62 であった。

- ・ 参加者の身分は、**図 6.45** によると、「正社員・契約社員」が 71%と最も多く、「アルバイト・パート・派遣社員」が 19%、「教員・技術職員」が 5%、「学生」が 3%、「その他」が 2%であった。
- ・ 試験者の年齢は、図 6.46 によると、20 代以下~60 以上の範囲において、「40 代」が 29%と最も多く、「20 代以下」が 27%、「30 代」が 26%、「50 代」が 16%、「60 代以上」は 2%であった。
- ・ 試験者の含水比試験の経験年数は、図 6.47 によると、「2 年以上 5 年未満」が 32%、「10 年以上 30 年未満」が 31%、「5 年以上 10 年未満」が 19%、「2 年未満」が 15%、「30 年以上」が 3%であった。
- ・ 試験者の含水比試験の頻度は、図 6.48 によると、「ほぼ毎日」が 50%で最も多く、「週に数回」が 34%、「月に数回」が 14%、「年に数回」が 2%であった。「ほぼ毎日」と「週に数回」の方は 全体の 84%を占め、試験頻度は多いことが確認された。

6.3.2 試験方法について

図 6.49~図 6.52 に、試料の保管方法、1 供試体あたりの試料の量、炉乾燥時間、室温になるまでの保管方法に関する結果をそれぞれ示し、要点を以下にまとめる。

試験方法について,回答機関数は60機関であった。供試体の量については,1機関で回答が2つあったことため,回答数は61となった。

- ・ 試料の保管方法は、**図 6.49** によると、「搬入状態のまま」が 56%と最も多く、「含水比変化の防止処置を行って保管」が 36%、「その他」が 8%であった。「その他」では、受取り時に着手との回答が得られた。
- ・ 1 試料あたりに使用した量は、図 6.50 によると、「30~100g」が 52%と最も多く、「10~30g」が 33%、「100g 以上」が 13%、「5~10g」が 2%であった。規格では、試料の最小質量の目安として、「試料の最大粒径が 2mm の場合、10g~30g」となっている。33%の機関が規格の最小質量の目安で試験を行い、98%の機関で目安以上の量で試験を行っていた。
- ・ 炉乾燥時間は**図 6.51** によると、「18~24 時間」が 71%と最も多く、「12~18 時間」が 21%、「25 時間以上」が 8%であった。規格では、「一定質量になるまでの時間は、一般には 18 時間~24 時間程度である」とあり、71%の機関が規格に示す一般的な時間で炉乾燥を行っていた。
- ・ 室温になるまでの保管方法は、図 6.52 によると、「デシケータ+吸湿剤」が 49%と最も多く、「室内」が 23%、「デシケータ」が 16%、「その他」が 12%であった。規格では、「炉乾燥試料を容器ごとデシケータに移し、ほぼ室温になるまで冷ました後」とあり、65%の機関で規格どおりデシケータを使用していた。

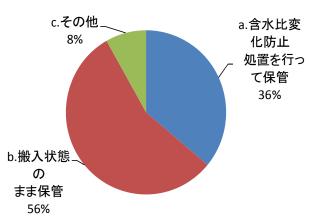
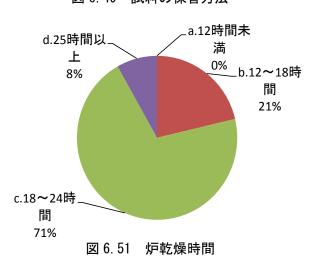
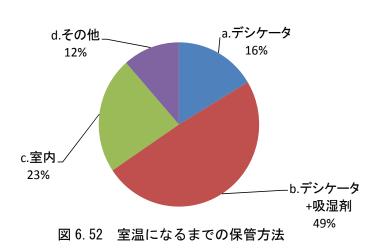
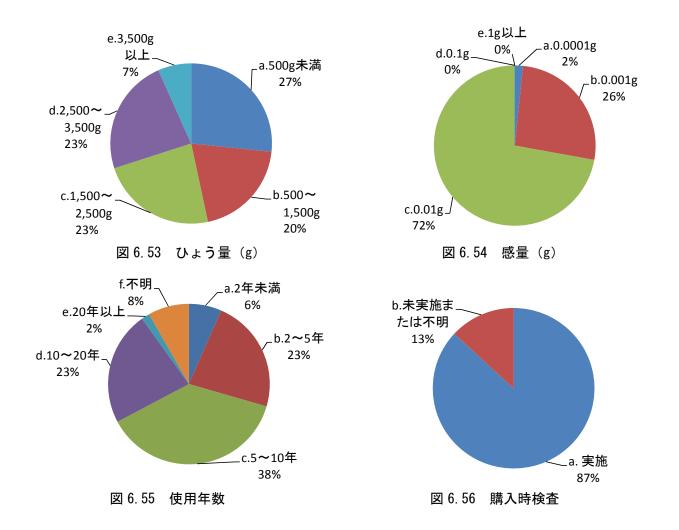
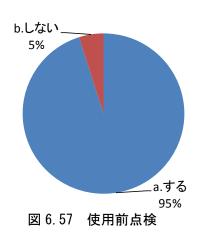




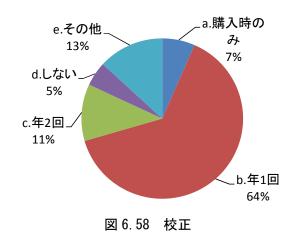
図 6.49 試料の保管方法

a.5g未満 0% b.5~10g 2% 13% c.10~30g 33%

図 6.50 試料の量(1供試体あたり)




6.2.3 はかりについて


図 6.53~図 6.58 に, はかりのひょう量, 感量, 使用年数, 購入時検査, 使用前点検, 校正に関する結果をそれぞれ示し, 要点を以下にまとめる。

はかりについて,回答機関数は61機関であった。ひょう量については,1機関が未回答であったことから,回答数は60であった。

- ・ ひょう量は、図 6.53 によると、「500g 未満」が 27%、「1,500~2,500g」と「2,500~3,500g」が共 に 23%、「500~1,500g」が 20%、「3,500g 以上」が 7%であった。
- ・ 感量は、図 6.54 によると、「0.01g」が 72%、「0.001g」が 26%、「0.0001g」が 2%であった。規格では、「試料の質量測定に用いるはかりの最小読取値は、10g 以上 100g 未満の場合は 0.01g」となっている。全ての機関で、規格以上の感量(最小読取値)のはかりを使用していた。
- ・ 使用年数は、図 6.55 によると、「5~10 年」が 38%と最も多く、「2~5 年」と「10~20 年」が 23%、「2 年未満」が 6%、「20 年以上」が 2%、「不明」が 8%であった。
- 購入時検査は、**図** 6.56 によると、87%の機関で実施していた。
- 使用前点検は、図 6.57 によると、95%の機関で実施していた。
- ・ 校正は、図 6.58 によると、「年1回」が 64%と最も多く、年2回が 11%、「購入時のみ」が 7%、「しない」が 5%であった。「その他」が 13%で「2年に1回」との回答が 2機関から得られた。

その他の使用器具では、容器(シャーレ、蒸発皿など),恒温乾燥機、デシケータ、混練用ボウル、 ヘラ、スコップが挙げられた。

6.3.4 その他のご意見

その他のご意見として, 「試料の発送に対するご意見」, 「試験方法の補足説明」, 「試験容器に対する疑問」について頂いた。以下に頂いたご意見を示す。

- ・ 試料をビニール袋内で混合するのは作業性がよくないため、タッパのような容器に入れて送付して もらえるとありがたい。 (23)
- ・ 夏季の猛暑時期に実施する試験としては、前述の試験全般で記したように、配布試料の断熱養生などのご配慮があれば良いかと思いました。 (27)
- ・ 測定精度を上げるため、試料の最少質量目安より多めにとった。(44)
- ・ トレイの上にシャーレを並べて乾燥炉に入れているが、シャーレに蓋をして乾燥炉に入れている試験機関があるのか気になった。購入したシャーレが 2 個セット (片方が一回り大きく蓋をするように重ね合わせることができる)で販売しており、使用方法としてあり得るのか気になった。 (74)

6.4 土の粒度試験

粒度試験に関するアンケート集計結果を以下に述べる。

6.4.1 試験者について

図 6.59~図 6.62 に試験者の身分,年齢,経験,頻度に関する結果を示し,要点を以下にまとめる。

- ・ 図 6.59 によると身分は,正社員・契約社員が 70%, アルバイト・パート・派遣社員が 20%, 教員・技術職員が 5%, 学生が 3%, その他が 2%であった。未回答は 0%であった。
- ・ 図 6.60 によると年齢は、40 代が 29%、20 代以下が 27%、30 代が 24%、50 代が 18%、60 代以上 が 2%であった。未回答は 0%であった。
- ・ 図 6.61 によると粒度試験の経験年数は、10~30 年が 34%、2~5 年が 30%、5~10 年が 17%、2 年 未満が 14%、30 年以上が 5%であった。未回答は 0%であった。
- ・ **図 6.62** によると粒度試験の頻度は、ほぼ毎日が 34%、週に数回が 32%、月に数回が 24%、年に数 回が 10%、初めてが 0%であった。未回答は 0%であった。

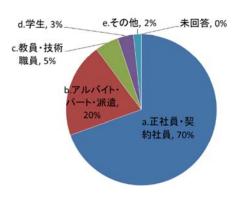
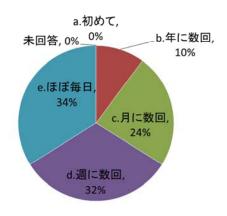
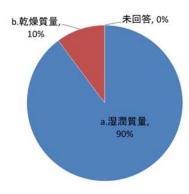


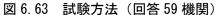
図 6.59 身分 (回答 59 機関)

図 6.60 年齢(回答 59 機関)

図 6.61 土の粒度試験の経験年数(回答 59機関)




図 6.62 土の粒度試験の頻度(回答 59 機関)


6.4.2 試験方法について

(1) 採取試料量

図 6.63~図 6.64 に試験方法, 試験に用いた乾燥質量に関する結果を示し, 要点を以下にまとめる。

- ・ 図 6.63 によると採取試料は、湿潤質量が 90%、乾燥質量が 10%、未回答は 0%であった。
- ・ 図 6.64 によると試験に用いた乾燥試料質量は、 $60\sim80$ g が 41%、 $80\sim110$ g が 32%、120g以上が 15%、60g 未満、 $110\sim120$ g が 5%であった。未回答は 2%であった。

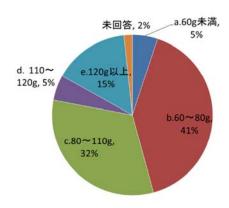


図 6.64 試験に用いた乾燥質量(回答 59 機関)

(2) ふるい分析

図 6.65~図 6.67 にふるいの方法、振とう時間(1 フルイ目あたり)、振とう終了の目安に関する結果を示し、要点を次にまとめる。

- ・ **図 6.65** によるとふるいの方法は、手動が 72%、自動が 25%、その他(手動+自動) が 3%であった。 未回答は 0%であった。
- ・ 図 6.66 によると1フルイ目あたりの振とう時間は,1~3分が53%,1分が15%,5分以上が12%,1分未満,3~5分が10%であった。未回答は0%であった。
- **図 6.67** によると振とう終了の目安は、目分量・感覚が 44%、通過分の残留分に対する比率が 27%、 時間で規定が 26%、その他が 3%であった。未回答は 0%であった。

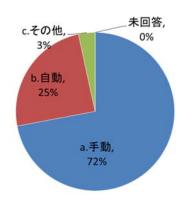


図 6.65 ふるいの方法 (回答 59 機関)

図 6.66 振とう時間 (1 フルイ目あたり) (回答 59 機関)

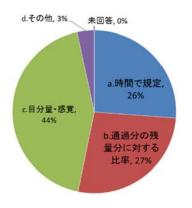


図 6.67 振とう終了の目安(回答 59機関)

(3) 沈降分析

図 6.68~図 6.75 に試料の量(乾燥質量),前処理(過酸化水素),分散剤の種類,分散剤の量,分散装置,分散時間,試験場所,水温の場所に関する結果を示し,要点を次にまとめる。

- ・ 図 6.68 によると試料の量(乾燥質量)は、60~80gが63%、80~100gが19%、40~60gが8%、100g以上が7%、40g未満が1%であった。未回答は2%であった。
- **図 6.69** によると前処理(過酸化水素)は、95%の機関が行い、5%の機関で行っていない。未回答は0%であった。
- ・ 図 6.70 によると分散材の種類は、ヘキサメタりん酸ナトリウムが 95%、ピロりん酸ナトリウムが 2%、その他(花王(株)製ポイズ 530、高分子分散剤)が 3%、トリポりん酸ナトリウムが 0% であった。未回答は 0%であった。
- 図 6.71 によると分散剤の量は, 10ml が 81%, 10~20ml が 9%, 10ml 未満が 7%, 20~30ml が 3%, 30ml が 0%であった。未回答は 0%であった。
- ・ 図 6.72 によると分散装置は、バッフル付の分散容器と攪拌翼の付いた攪拌機が 44%、ミキサーによる攪拌が 25%、手動による攪拌棒が 15%、バッフル無しの分散容器と攪拌翼の付いた攪拌機が 14%、その他(手動)が 2%であった。未回答は 0%であった。
- ・ 図 6.73 によると分散時間は、1 分が 62%、1~3 分が 27%、5 分以上が 5%、1 分未満と 3~5 分が ともに 2%であった。未回答は 2%であった。
- 図 6.74 によると試験場所は、恒温室が 39%、通常の部屋が 34%、恒温水槽が 25%、その他が 2% であった。未回答は 0%であった。
- 図 6.75 によると水温の測定は、懸濁液の水温が 47%、水槽内の水温が 31%、室温が 12%、その他が 10%であった。未回答は 0%であった。

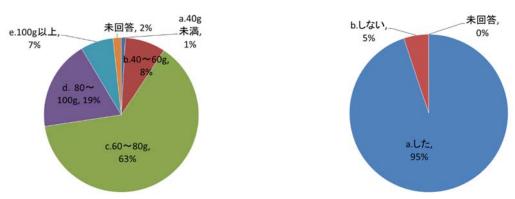


図 6.68 試料の量(乾燥質量) (回答 59機関) 図 6.69 前処理(過酸化水素) (回答 59機関)

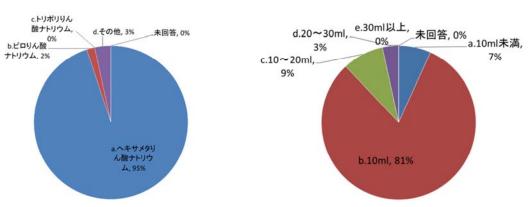


図 6.70 分散剤の種類(回答 59機関)

図 6.71 分散剤の量(回答 59機関)

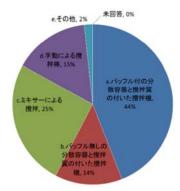


図 6.72 分散装置 (回答 59 機関)

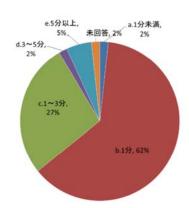


図 6.73 分散時間(回答 59 機関)

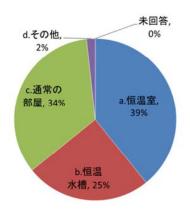
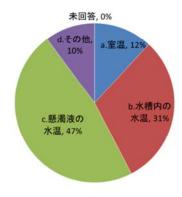
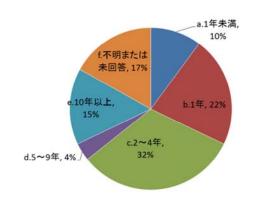


図 6.74 試験場所(回答 59 機関)



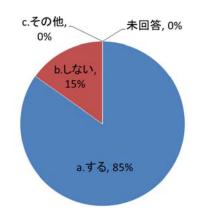

図 6.75 水温の測定(回答 59 機関)

6.4.3 今回の試験に使用された装置、器具について

(1) ふるい

図 6.76~6.79 に購入時期, 購入時検査, 使用前点検, 定期点検に関する結果を示し, 要点を次にまとめる。

- ・ 図 6.76 によると購入時期は,2~4 年が32%,1 年が22%,10 年以上が15%,1 年未満が10%,5~9 年が4%であった。不明または未回答は17%であった。
- ・ 図 6.77 によると購入時検査は, 実施するが 85%, 未実施または不明が 15%であった。未回答は 0% であった。
- 図 6.78 によると使用前点検は、点検するが 85%、点検しないが 15%、その他は 0%であった。未回答は 0%であった。
- ・ 図 6.79 によると定期点検は、するが 59%、しないが 41%であった。未回答は 0%であった。



b.未実施ま たは不明, 15% a.実施, 85%

未回答,0%

図 6.76 使用年数 (回答 59 機関)

図 6.77 購入時検査(回答 59 機関)

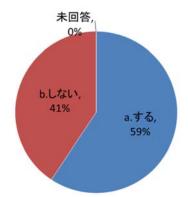


図 6.78 使用前点検(回答 59 機関))

図 6.79 定期点検(回答 59 機関)

(2) 浮ひょう

図 6.80~図 6.85 に, 測定範囲, 最小目量, 使用年数, 購入時検査, 使用前点検, 校正に関する結果をそれぞれ示し, 要点を次にまとめる。

- 図 6.80 によると測定範囲は, 0.995~1.050g/cmが 83%, 1.000~1.060g/cmが 12%, その他が 3%, 1.000~1.200g/cmが 0%であった。未回答は 2%であった。
- ・ 図 6.81 によると最小目盛は、0.001g/cm゚が 81%、0.01g/cm゚が 8%、0.005g/cm゚が 7%、その他が 2%、0.002g/cm゚が 0%であった。未回答は 2%であった。
- 図 6.82 によると使用年数は、5~10 年が 30%、 2~5 年が 29%、10~30 年が 15%、 2 年未満、不

明が12%, 30年以上が2%であった。未回答は0%であった。

- **図 6.83** によると購入時検査は,76%の機関で実施し,24%の機関で行っていなかった。未回答は0%であった。
- 図 6.84 によると使用前点検は,86%の機関で実施し,14%の機関で行っていなかった。未回答は0%であった。
- 図 6.85 によると校正は, 購入時のみが 39%, 年1回 34%, その他(2年に1回)が 15%, していない機関が 10%, 年2回が 2%であった。未回答は 0%であった。

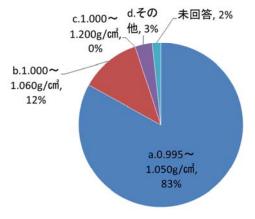


図 6.80 測定範囲(回答 59 機関)

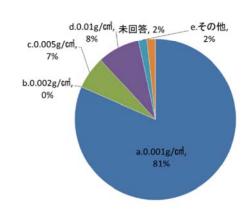


図 6.81 最小目量(回答 59 機関)



図 6.82 使用年数 (回答 59 機関)

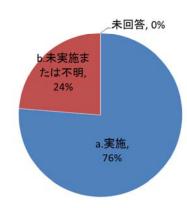


図 6.83 購入時検査(回答 59機関)

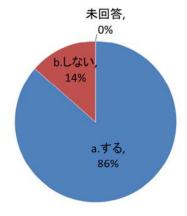


図 6.84 使用前点検(回答 59 機関)

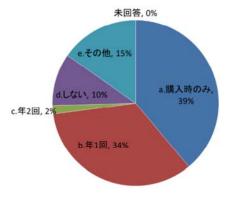


図 6.85 校正(回答 59 機関)

(3) 温度計

図 6.86~図 6.92 にタイプ,適用範囲,目量・感量,使用年数,購入時検査,使用前点検,校正に関

する結果を示し, 要点を以下にまとめる。

- 図 6.86 によると温度計のタイプは、棒状ガラス製(有機液体)が41%、デジタルが30%、棒状ガラス製(水銀)が29%であった。未回答は0%であった。
- ・ 図 6.87 によると適用範囲は、0~100℃が 54%、0~50℃が 43%、0~250℃が 3%であった。未回答 は 0%であった。
- ・ 図 6.88 によると目量・感量は, 0.1℃が 47%, 1℃が 34%, 0.5℃が 19%であった。未回答は 0%であった。
- ・ 図 6.89 によると使用年数は,5年~10年が37%,2年~5年が26%,2年未満が15%,10年~20年と不明が10%,20年以上が2%であった。未回答は0%であった。
- 図 6.90 によると購入時検査は、64%の機関で実施していた。未実施は36%の機関であった。未回答は0%であった。
- **図 6.91** によると使用前点検は,68%の機関で実施していた。しない機関は32%であった。未回答は0%であった。
- 図 6.92 によると校正は、年1回が36%、購入時のみが30%、しないが20%、その他が14%、年2回が0%であった。未回答は0%であった。

•

図 6.86 タイプ (回答 59機関)

図 6.88 目量・感量(回答 59 機関)

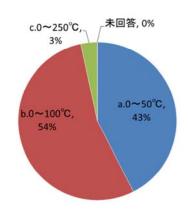


図 6.87 適用範囲 (回答 59 機関)

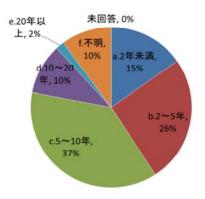


図 6.89 使用年数 (回答 59 機関)



図 6.90 購入時検査 (回答 59 機関)

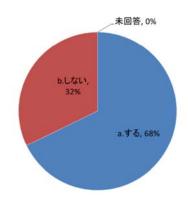


図 6.91 使用前点検(回答 59 機関)

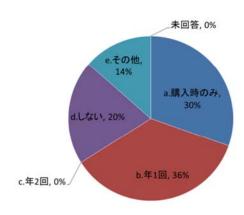


図 6.92 校正 (回答 59 機関)

(4) その他使用器具について

JIS A 1204 の規格で示されているその他使用器具について、11 機関から報告があった。報告内容を図 6.93~図 6.94 に示す。

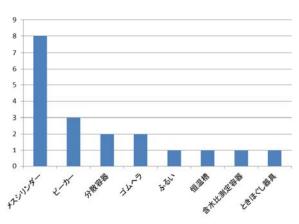


図 6.93 その他使用器具 (回答 11 機関,複数回答)

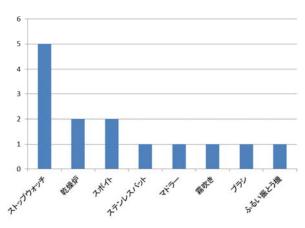


図 6.94 本規格以外の使用器具 (回答 11 機関,複数回答)

6.4.4 粒径加積曲線の描き方について

図 6.95 に粒径加積曲線の描き方に関する結果を示し、要点を以下にまとめる。

・ 図 6.95 によると粒径加積曲線の描き方は、専用プログラムが83%とほとんどを占め、エクセル等の表計算ソフトにてスムーシングが13%、手書き(フリーハンド)が2%、手書き(曲線定規を利用)、その他が0%であった。未回答は2%であった。

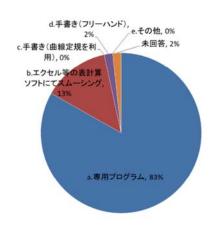


図 6.95 粒径加積曲線の描き方(回答 51 機関)

6.4.5 その他

- $6.4.1 \sim 6.4.4$ で取りまとめた設問以外に 8 機関より頂いたコメントを以下に示す。
- ① アンケートもう少し簡略化していただければと思います。(01)
- ② 分散装置では攪拌翼撹拌機 (a 法), 調理用ミキサー(b 法) の 2 通りで実施したが, A 試料において b 法では粒径加積曲線が粒径 d<0.075mm の範囲で約 10%, a 法よりも上方にずれ, 細粒分の中で粒子破砕を起こしていると考えられたので, A,B 両試料とも, a 法の結果を採用した。(06)
- ③ 両試料とも通過百分率の 75μm 付近において, 沈降分析結果がふるい分析結果を上回る結果がでたが, 要因の特定ができなかった。(42)
- ④ ふるい目には土粒子が詰まりやすいため、柔らかい毛のハケで常にきれいにするように努めた。塩分の影響により、沈降分析時に土粒子が団粒化すると考えられる場合は、澄んだ上水をスポイトで排水し、蒸留水で補填することを数日間繰り返して、塩分濃度を低下させた後に、沈降測定を行った。(44)
- ⑤ 採取試料量とは何ですか。試料の準備方法の問いですか、2mm以上を含む試料のことですか。その場合、湿潤と空気乾燥試料で分取されます。それとも、乾燥土を使用したとの問いでしょうか。又は、試験土の乾燥質量が知りたかったのでしょうか。(45)
- ⑥ 粒径 d は、普段、有効数字 2 桁で出力している。(80)
- ⑦ 特になし(27,61)

6.5 液性限界·塑性限界試験

液性限界・塑性限界試験に関するアンケート集計結果を以下に述べる。

6.5.1 試験者について

図 6.96~図 6.99 に試験者の身分、年齢、経験、頻度に関する結果を示し、要点を以下にまとめる。

- ・ **図** 6.96 によると身分は,正社員・契約社員が 71%, アルバイト・パート・派遣社員が 18%, 教員・技術職員が 5%, 学生が 2%, その他が 2%であった。未回答は 2%であった。
- ・ 図 6.97 によると年齢は、30 代、40 代が 26%、20 代以下が 20%、 50 代が 19%、60 代以上が 7% であった。未回答は 2%であった。
- ・ 図 6.98 によると液塑性限界試験の経験年数は,10~30 年が 37%,2~5 年が 25%,5~10 年が 19%,2 年未満が 12%,30 年以上が 5%であった。未回答は 2%であった。
- ・ 図 6.99 によると頻度は、月に数回、週に数回が 29%、年に数回、ほぼ毎日が 20%、初めてが 0% であった。未回答は 2%であった。

図 6.96 身分 (回答 59 機関)

図 6.97 年齢(回答 59 機関)

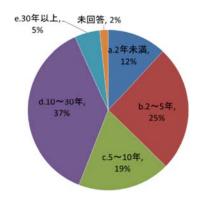


図 6.98 液塑性限界試験の経験年数(回答 59 機関)図 6.99 液塑性限界試験の頻度(回答 59 機関)

6.5.2 試験方法について

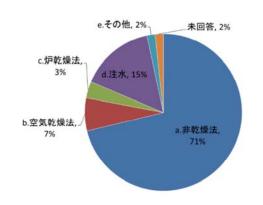
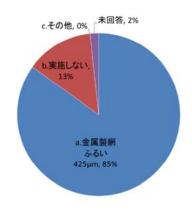

(1) 試料の裏ごし

図 6.100~図 6.101 に試料の準備, 試料の裏ごしに関するアンケート結果をそれぞれ示し, 要点を以下にまとめる。

・ 図 6.100 によると試料の準備は、非乾燥法が 71%、注水法が 15%、空気乾燥法が 7%、炉乾燥法が

3%, その他が 2%であった。未回答は 2%であった。

・ 図 6.101 によると試料の裏ごしは、金網製網ふるい $425\mu m$ が85%、裏ごしを実施しない機関が13%、その他は0%であった。未回答は2%であった。



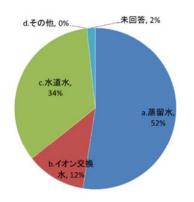

図 6.100 試料の準備(回答 59 機関)

図 6.101 試料の裏ごし(回答 59 機関)

(2) 液性限界試験

図 6.102~図 6.107 に使用する水の種類, 試料の裏ごし後から終了まで, 1 点測定してからの加水・ 練返し時間, 試料の厚さ, 試料の広さ, 溝接合の判断基準に関するアンケート結果をそれぞれ示し, 要 点を以下にまとめる。

- ・ 図 6.102 によると使用する水の種類は、蒸留水が 52%、水道水が 34%、イオン交換水が 12%、その他が 0%であった。未回答は 2%であった。
- ・ 図 6.103 によると試料の裏ごし後から終了までの繰返し時間は,5~20分が36%,20~40分が22%, その他が18%,40~60分と60~120分が10%,1分未満が2%であった。未回答は2%であった。
- ・ 図 6.104 によると 1 点測定してからの加水・練返し時間は, 1~5 分が 59%, 5~10 分が 19%, 10 ~20 分が 10%, 1 分未満が 5%, 20~30 分が 3%, 30 分以上が 2%であった。未回答は 2%であった。
- ・ 図 6.105 によると試料の厚さは、1cm が 66%、1cm より厚いが 17%、1cm より薄いが 14%であった。 未回答は 3%であった。
- ・ 図 6.106 によると試料の広さは、半分より広いが 59%、半分程度が 37%、半分より狭いが 2%であった。未回答は 2%であった。
- ・ 図 6.107 によると溝接合の判断基準は、目視で判断が 49%、ゲージを使用するが 46%、その他が 2% であった。未回答は 3%であった。

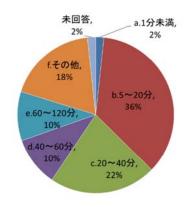


図 6.102 使用する水の種類(回答 59 機関) 図 6.103 裏ごし後から終了までの時間(回答 59 機関)

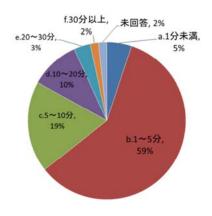


図 6.104 1 点測定してからの加水・練返し時間 (回答 59 機関)

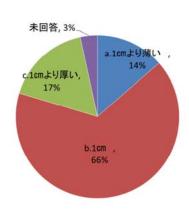


図 6.105 試料の厚さ(回答 59機関)

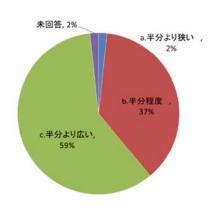


図 6.106 試料の広さ(回答 59 機関)

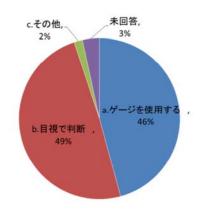


図 6.107 溝接合の判断基準(回答 59 機関)

(3) 塑性限界試験

図 6.108~図 6.110 に試料調整方法,調整後の放置時間,塑性限界の判断基準に関するアンケート結果をそれぞれ示し,要点を以下にまとめる。

- ・ 図 6.108 によると試料の調整方法は、空気乾燥法が 49%、紙などに挟むが 28%、ドライヤーなどが 15%、炉乾燥(50℃程度)が 5%、炉乾燥法(110℃±5℃)が 2%であった。未回答は 2%であった。
- ・ 図 6.109 よると調整後の放置時間は,1~5 分が 31%,5~10 分,10~60 分が 18%,60 分以上が 16%, 1 分未満が 12%であった。未回答は 5%であった。
- ・ 図 6.110 によると塑性限界の判断基準は、3mm 棒と比較するが 69%、目視判断が 26%、その他が 3% であった。未回答は 2%であった。

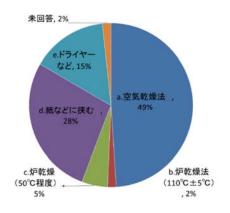


図 6.108 試料調整方法(回答 59 機関)

図 6.109 調整後の放置時間(回答 59機関)

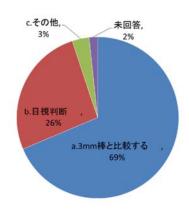


図 6.110 塑性限界の判断基準(回答 59 機関)

6.5.3 今回の試験に使用された装置、器具について

(1) はかり

図 6.111~図 6.116 にひょう量, 感度, 使用年数, 購入時検査, 使用前点検, 校正に関するアンケート結果をそれぞれ示し, 要点を以下にまとめる。

- ・ 図 6.111 によるとひょう量は、300g 未満、 $300\sim500g$ 、 $1,000\sim3,000g$ がいずれも 25%、 $500\sim1,000g$ が 16%、3,000g 以上が 5%であった。未回答は 4%であった。
- ・ 図 6.112 によると感量は、0.001g が 49%、0.01g が 42%、0.0001g が 7%、0.1g、1g 以上は 0%であった。未回答は 2%であった。
- ・ 図 6.113 によると使用年数は、5~10 年が 36%、2~5 年が 22%、10~20 年が 20%、不明が 8%、2 年未満が 7%、 20 年以上が 5%であった。未回答は 2%であった。
- 図 6.114 によると購入時検査は、実施が80%、未実施または不明が18%であった。未回答は2%であった。
- 図 6.115 によると使用前点検は、実施している期間は 91%、実施していない機関が 7%であった。 未回答は、2%であった。
- ・ 図 6.116 によると校正は、年 1 回が 61%、その他が 14%、年 2 回が 12%、購入時のみが 8%、しないが 3%であった。未回答は 2%であった。

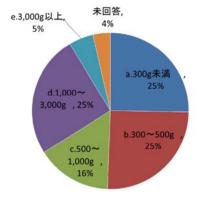


図 6.111 ひょう量 (g)(回答 59 機関)

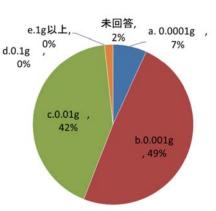


図 6.112 感量 (g) (回答 59 機関)

図 6.113 使用年数(回答 59 機関)

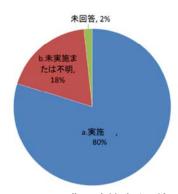


図 6.114 購入時検査(回答 59 機関)

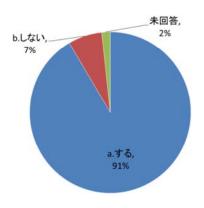


図 6.115 使用前点検(回答 59 機関)

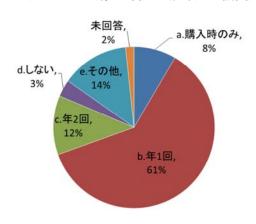
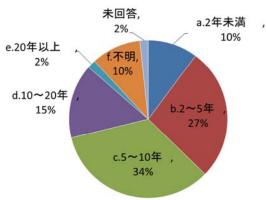



図 6.116 校正(回答 59 機関)

(2) ガラス板

図 6.117~図 6.120 に使用年数,使用前点検,液性限界使用時,塑性限界使用時に関するアンケート結果をそれぞれ示し,要点を以下にまとめる。

- ・ 図 6.117 によると使用年数は、5~10 年が 34%、2~5 年が 27%、10~20 年が 15%、2 年未満、不 明が 10%、20 年以上が 2%であった。未回答は 2%であった。
- ・ 図 6.118 によると使用前点検は、実施している機関が73%、しない機関が25%であった。未回答は2%であった。
- ・ 図 6.119 によると液性限界使用時は,ガラス板(滑らか面)が 64%,ガラス板(すりガラス面)が 29%, その他(使用しない(磁器皿))が 2%であった。未回答は 5%であった。
- ・ 図 6.120 によると塑性限界試験時は、ガラス板(するガラス面)が 85%、ガラス板 (滑らか面) が 13% であった。未回答は 2%であった。

a.する , 73%

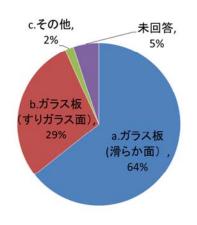

b.しない, 25%

図 6.117 使用年数(回答 59 機関)

図 6.118 使用前点検(回答 59 機関)

未回答.

2%

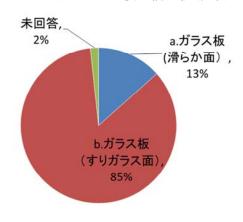


図 6.119 液性限界使用時(回答 59 機関)

図 6.120 塑性限界使用時(回答 59 機関)

(3) 液性限界試験機

図 6.121~図 6.127 に試験機,使用年数,購入時検査,硬質ゴム台の点検,黄銅皿の落下高さの点検, 溝切りゲージの点検,使用目点検に関するアンケート結果をそれぞれ示し,要点を以下にまとめる。

- 図 6.121 によると試験機は、手動が 69%、自動が 29% であった。未回答は 2% であった。
- ・ 図 6.122 によると使用年数は、10~20 年が 27%、5~10 年が 25%、2~5 年が 22%、不明が 12%、2 年未満が 10%、20 年以上は 2%であった。未回答は 2%であった。
- ・ 図 6.123 によると購入時検査は、実施した機関は66%、しない機関は32%であった。未回答は2%であった。
- ・ 図 6.124 によると硬質ゴム台の点検は、目視点検のみが 42%、硬度測定器により年 1 回が 29%、実施しない機関が 19%、その他が 5%、硬度測定器により年 2 回が 3%であった。未回答は 2%であった。
- 図 6.125 によると黄銅皿の落下高の点検は、実施している機関が88%、しない機関が10%であった。未回答は2%であった。
- ・ 図 6.126 によると溝切りゲージの点検は、実施している機関が 85%、しない機関が 13%であった。 未回答は 2%であった。
- ・ 図 6.127 によると使用前点検は、年 1 回が 37%、その他が 27%、購入時のみが 24%、実施しないが 7%、年 2 回が 3%であった。未回答は 2%であった。

e.20年以上 2% f.不明, 12% a.2年未濟 10% b.2~5年 27% c.5~10年 25%

図 6.121 試験機(回答 59 機関)

図 6.122 使用年数(回答 59 機関)

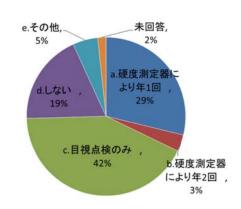
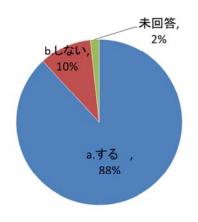



図 6.123 購入時検査(回答 59 機関)

図 6.124 硬質ゴム台の点検(回答 59 機関)

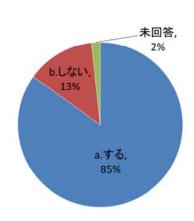


図 6.125 黄銅皿の落下高の点検(回答 59 機関)

図 6.126 溝切りゲージの点検(回答 59機関)

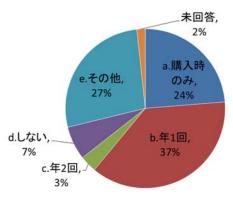


図 6.127 使用前点検(回答 59 機関)

(4) 液性限界試験用黄銅皿について

図 6.128~図 6.130 に黄銅皿の重量(g)、黄銅皿の傾き A(mm),黄銅皿の傾き B(mm)に関するアンケート結果をそれぞれ示し、要点を以下にまとめる。

- ・ 図 6.128 によると黄銅皿の重量は、最小重量は 142.24g で最大重量は 196.52g となり、平均重量は 170.74g であった。全体的には 160g 台が 15 機関、180g 台が 12 機関、150g 台が 8 機関であった。
- 図 6.129 によると黄銅皿の傾き A(mm)は、60mm 台が 26 機関、40mm 台が 13 機関、50mm 台が 8 機関、40mm 以下、70mm 台はそれぞれ 1 機関であった。未回答は 10 機関であった。
- ・ 図 6.130 によると黄銅皿の傾き B(mm)は, 10mm 台が 24 機関, 20mm 台が 23 機関, 10mm 以下が 2 機関であった。未回答は 10 機関であった。

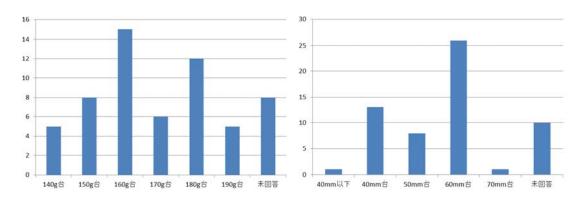


図 6.128 黄銅皿の重量(g) (回答 59 機関) 図 6.129 黄銅皿の傾き A(mm) (回答 59 機関)

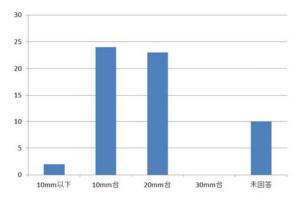


図 6.130 黄銅皿の傾き B(mm) (回答 59 機関)

6.5.4 その他

6.5.1~6.5.3 で取りまとめた設問以外に12機関より頂いたコメントを以下に示す。

- ① 塑性限界試験においてひも状にした試料の乾燥を促進するため、すりガラス上の乾燥した部分で転がすようにしている。(06)
- ② ⑦使用前点検の a.購入時のみ b.年 1 回 c.年 2 回 d.しない e.その他 は間違えではないのか。 (09)
- ③ 弊社では、液性限界試験の試験実績は、35%以下の試料が大半であり、今回のような粘性の高い試料は初めてであり、難しかった。(21)
- ④ ⑦は"校正"と読み替えて記入致しました。(23)
- ⑤ 手動の液性限界試験機を用いたため、回転速度を保つため、ストップウォッチを横において回転速

度を確認した。(42)

- ⑥ 液性限界試験では、溝切りを皿の底に直角に保つように努めた。(44)
- ⑦ 4.図-1より B の長さは直接測定出来ませんでした。4.の黄銅皿の傾きは A,B(mm)は何を測定しているのでしょうか。重要なのは落下高さと回転速度と思います。(45)
- ⑧ 塑性限界の判断基準について,直径約3mmで切れぎれになった時とは,約何cmの長さで切れぎれ というのか試験者の手加減が影響しやすいので,次回のアンケートで聞いてみたいです。(71)
- ⑨ 確かに、皿のRや大きさと落下高さ、下のゴムの高度だけでは、構造上、落下エネルギーに整合が 取れるとは限らない。

接合部分の角度や長さ形等で、軸とゴム台設置個所との距離や重さ、傾きが異なるので、エネルギーに違いがでる気がする。(80)

⑩ 特になし (01, 27, 61)

以上のいただいたコメントの中に,表 6.5 に示すアンケート 3. 液性限界試験機における⑦使用前点検が校正にあたるのではないかとの指摘があった。液性限界試験機の校正に関する部分は,④,⑤,⑥になり,使用前点検の内容は,「黄銅皿の内部に傷がないか?」,「黄銅皿の金具部分にガタがないか?」,「自動であれば落下間隔に誤差がないか?」,「カムの当りとカム部分に異常な摩擦(すりへり)がないか?」等の試験機の操作時の点検を,元々意図していた。誤解された参加機関の方々にはお詫びいたします。

おわりに

地盤材料試験に関する技能試験は、日本適合性認定協会(JAB)と協同組合関西地盤環境研究センターの共催で平成19年度から実施されている。平成23年度は、公益社団法人地盤工学会の「地盤材料試験結果の精度の分析と表示方法についての研究委員会」と日本適合性認定協会(JAB)が学会員などから募集し45機関の参加を得て、研究的に実施した。また、地盤工学会調査・研究部の「技能試験準備委員会」が学会行事として試行した平成24年度は、学会員を中心に51機関の参加を得た。さらに、地盤工学会基準部の「技能試験実施委員会」が技能試験を行うようになってからは、平成25年度:55機関、平成26年度:66機関、平成27年度:55機関、平成28年度:51機関の参加を得ている。

平成 29 年度は, 61 機関の参加を得た。継続的な学会行事として取組むために経費的な収支バランスから,相当の参加費用を徴収させて頂いたにもかかわらず,大学・高専を含む多くの試験機関に参加して頂き,心から感謝している。

技能試験は、人の体の健康に例えると健康診断に相当するものである。今回の結果、残念ながら z スコアが 3 以上となり "不満足"という結果となった機関は、その原因を精査され、試験器具・試験方法・試験技術・試験環境などの見直しをされる機会として頂きたい。また、z スコアが z 以下で "満足"という結果となった機関は、試験精度の維持・向上にさらに研鑽を続けて頂きたい。

毎回の技能試験において、参加機関から頂くアンケートの回答は示唆に富むものである。学会としては、試験規格の見直しや改正の参考にさせて頂ける内容も多い。自己の回答と比べて他の機関がどの様な取り組みをされているかを点検する資料として活用頂ければ幸いである。

地盤材料試験に関する技能試験は、地盤工学会の定期的な行事として定着しつつあるが、学会 としては、技能試験の重要性をより多くの方に認識され、今後も多くの機関に継続して参加頂く よう、努めていく所存である。

最後に、技能試験結果は企業秘密に関わる内容も多く含まれているため、試験・アンケート結果の管理には十分注意していることを付記しておく。

謝 辞

地盤材料試験の技能評価に興味を示し,技能試験にご参加頂いた機関と技術者・研究者に感謝 します。

本技能試験において,試料・供試体の準備と配付,試験結果の取りまとめと報告書作成の実務 を担当して頂いた協同組合関西地盤環境研究センターに感謝します。

最後に、試験・アンケート結果の管理業務と諸々の事務業務を担当して頂いた地盤工学会事務 局 技能試験担当職員に感謝します。

平成 30 年 1 月

公益社団法人地盤工学会 基準部 技能試験実施委員会

委員長 日置和昭(大阪工業大学)

委 員 稲積真哉 (芝浦工業大学)

委員澤孝平(関西地盤環境研究センター)

委 員 中澤博志 (防災科学技術研究所)

委 員 中山義久 (関西地盤環境研究センター)

委 員 沼倉桂一 (川崎地質)

委員 若杉 護(基礎地盤コンサルタンツ)

委 員 藤原照幸(地域地盤環境研究所)

委 員 山内 昇(北海道土質試験)

委 員 渡辺健治(鉄道総合技術研究所)

オブザーバー 城野克広 (産業技術総合研究所)

オブザーバー 中川 直(全国地質調査業協会連合会)

オブザーバー 保坂守男(日本適合性認定協会)

オブザーバー 服部健太(関西地盤環境研究センター)

平成 29 年度 地盤材料試験の技能試験 報告書

平成 30 年度 [2018 年] 1 月 31 日 発行

編 集 地盤工学会 基準部 技能試験実施委員会

発 行 公益社団法人 地 盤 工 学 会

東京都文京区千石4丁目38番2号

T112-0011 03(3946)8677

印刷株式会社ワコー