「土質試験 基本と手引き 第三回改訂版」正誤表

				1	T	2022/3/31 廖正, 2022/1/13追加 廖正
No.	正誤表への追加	正誤の反映 (刷り数)	page	行位置	誤	正
1	2022/4/27		p.5	上から12行目	<u>CBR</u> 試験	CBR 試験 全角文字→半角文字に変更
2	2022/4/27		p.17	右補足欄 下段	p. <mark>16</mark> ,図-2.15参照。	p.18, 図-2.15参照。
3	2022/4/27		p.18	設問3)	・・・現地からおよそ何kgの試料を・・・	・・・現地からおよそ何gの試料を・・・
4	2022/4/27		p.23	右補足欄 下段	ノギス法の器具は,第14章,第15章の <mark>三軸,一軸</mark> 圧 縮試験の・・・。	ノギス法の器具は,第13章,第15章の一 <mark>軸,三軸</mark> 圧縮試験 の・・・。
5	2022/7/15		p.36	式(4.5)	$L = L_1 + \frac{1}{2} \left(L_{\rm B} - \frac{V_{\rm B}}{A} \times 10 \right)$	$L = L_1 + rac{1}{2} \Big(L_{ m B} - rac{V_{ m B}}{A} \Big) imes imes 10$ を省く
	2022/4/27 (2022/5/31削除)		p.36	武(4.6)	式の説明 <u>*粘性係数 / (mPa*s)</u> <u>+標準重力加速度 / (</u>	- テの説明として吹き出しで以下の内容を記載する。 「ここでの テの単位は(Pate)で表-4.2の値に10 ⁻³ を乗じて用いる。」 g _n は (981cm/s ²)に変更。
6	2022/5/31 (2022/7/15削除)		同上	同上	"「土の粒度試験」の記載内容の誤りについて(第24 るため 6番 (追加年月日 2022/4/27) は取り消します	职)" (https://www.jiban.or.jp/?page_id=17391) と整合させ 。
	2022/7/15		p. 36	17行目 式(4.6)	$d = \sqrt{\frac{30\eta}{g_{\rm n}(\rho_{\rm s} - \rho_{\rm w})} \cdot \frac{L}{t}}$	$d=\sqrt{rac{30\eta}{g_{\rm n}(ho_{\rm s}- ho_{\rm w})}\cdotrac{L}{t}} imesrac{1}{10^5}$ 吹き出しで「単位換算のために1/10 5 を乗じている。」を記載する
7	2022/5/19		p.36	表-4.2	温度13℃及び14℃の補正係数Fの値 13℃ 0.0002 14℃ 0.0001	13°C −0.0002 14°C −0.0001
8	2022/7/15		p.37	データシート記入例抜粋	$ \frac{(1.2) \cdot 9 \cdot 9 \cdot 10}{8 \cdot 0.018} \frac{(1.2) \cdot 9 \cdot 10}{10 \cdot 0.018} \frac{(1.2) \cdot 10}{10 \cdot 0.018} (1$	$\sqrt{\frac{30\eta}{g_{\rm n}(\rho_{\rm s}-\rho_{\rm w})}}\times\frac{1}{10^5}$
9	2022/4/27		p.38	右補足欄 中段	液状化強度についてはp.154を参照する。	液状化強度についてはp.160を参照する。
10	2022/7/15		p.38-39	下から4行目以降 式(4.10) (4.11) (4.12) (4.13)	$\cdots R(N)$ は、 $R = 3\pi d\eta v$ $\cdots 粒子に作用する重力f(N)は、$ $f = \frac{\pi d^2}{6} (\rho_s - \rho_w) g_n$ $v = \frac{g_n(\rho_s - \rho_w) d^2}{18\eta}$ $d = \sqrt{\frac{18\eta}{g_n(\rho_s - \rho_w)} \cdot \frac{L}{t}}$ 上式で、 d 、 L の単位sをmmへ、 ρ_s , ρ_w を kg/m^3 から Mg/m^3 へ、さらに t の単位sをminへ変換すれば粒径 d は式(4.6)で求めることができる。	$ \begin{array}{l} \cdots R(\mathbf{N}) \mathrm{i} \mathbf{t}, \ \mathbf{h} \mathbf{t} \mathbf{t} \mathbf{f} \mathbf{w} \mathbf{g} \mathbf{v}_1 (\mathbf{mPa/s}) \mathbf{b} \mathbf{v} \mathbf{v} \mathbf{b} \mathbf{v}, \\ R = 3\pi d\eta v \times 10^{-2} \\ \cdots \\ \psi \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$
11	2022/4/27		p.39	本文下から6行目	一方, 懸濁液内の比 <mark>重</mark> 浮ひょうによる・・・	一方, 懸濁液内の浮ひょうによる・・・ <mark>比重</mark> を削除。
12	2022/4/27		p.39	設問5)	・・・土粒子が15℃の静水中を・・・	・・・土粒子が15.0℃の静水中を・・・
13	2022/7/15		p.40	図-4.10 データシート中段	$\sqrt{\frac{30\eta}{g_{\rm n}(\rho_{\rm s}-\rho_{\rm w})}}$	$\sqrt{\frac{30\eta}{g_{\rm n}(\rho_{\rm s}-\rho_{\rm w})}}\times\frac{1}{10^5}$
14	2022/4/27		p.42	下から7行目	⑧含水比測定器具:第3章2.1 (p.18) 参照。	⑧含水比測定器具:第3章2.1 (p.20) 参照。
15	2022/4/27		p.46	右補足欄 中段	液性指数は・・・把握することが出来る (p.156, 図-	液性指数は・・・把握することが出来る(p.128, 図-13.10参
10		<u> </u>	P. 10	H IIIACIPA T PA	15.10参照)。	照)。

「土質試験 基本と手引き 第三回改訂版」正誤表

						2022/5/31 修正, 2022/1/15追加*修正
No.	正誤表への 追加	正誤の反映 (刷り数)	page	行位置	誤	正
16	2022/4/27		p.53	本文下から1行目	・・・さらに細粒分,砂分の含有率によって・・・	・・・さらに細粒分,礫分の含有率によって・・・
17	2022/4/27		p.66	図-7.6 データシート	乾燥密度 g/cm³	Mg/m³
18	2022/4/28		p.99	下から4行目	スタンドパイプの断面積(mm³)	スタンドパイプの断面積(mm²)
19	2022/5/18		p.110	式(12.4)	$H_{\rm S} = \frac{m_{\rm S}}{\rho_{\rm S} A} = \frac{m_{\rm S}}{\rho_{\rm S} \pi D^2 / 4}$	$H_{\rm s} = \frac{m_{\rm s}}{\rho_{\rm s} A} \times 10^3 = \frac{m_{\rm s}}{\rho_{\rm s} \pi D^2/4} \times 10^3$
20	2022/4/28		p.121	図-12.25 計算書の記入例 特記事項欄内の式 図-12.25	$m_{\rm v} = (\Delta \varepsilon / 100) / \Delta p$	$m_{\sqrt{=\Delta}} \mathcal{E} / \Delta p$
21	2022/5/18		p.121	因-12.23 計算書の記入例 特記事項欄内の式	$H_s = m_s / (\rho_s A)$	$H_s=m_s/(\rho_s A)\times 10^3$
22	2022/4/27		p.122	式(13.1)	$\tau_{\rm f} = c + \sigma \tan \varphi (13.1)$	τ _f = c +σ tanφ 式番号削除
23	2022/4/27		p.125	下段の図 (データシート記入例)		1
24	2022/4/27		p.130	図-13.13 データシート下段 特記事項 式	$\sigma = \frac{P}{A_0} (1 - \varepsilon/100) \times \frac{10}{10}$	$\sigma = \frac{P}{A_0} (1 - \varepsilon/100) \times 10^3$
25	2022/4/27		p.137~	式番号	式(14.2)・・・式(14.12)	式 (14.1) …式 (14.11) 式番号の繰上げ
26	2022/4/27		p.158	設問8)	モール・クーロンの破壊規準と・・・	三軸CD試験でのモールクーロンの破壊規準と・・・
27	2022/4/27		p.159	図-15.19 データシート	図表中(右から2列目)単位 u kN/m ² または <i>AV</i> cm ³	77.2
28	2022/4/27		p.159	図-15.19 データシート下段 特記事項 2)式	主応力差を求める式 $2) \text{ UU, CU, } \overline{\text{CU}}: \sigma_{\text{a}} - \sigma_{\text{r}} = \frac{P}{A_{\text{c}}} (1 - \epsilon_{\text{a}}/100) \times 10$ $\text{CD}: \sigma_{\text{a}} - \sigma_{\text{r}} = \frac{P}{A_{\text{c}}} \frac{(1 - \epsilon_{\text{a}}/100)}{(1 - \epsilon_{\text{V}}/100)} \times 10$	主応力差を求める式 $2) \text{ UU, CU, } \overline{\text{CU}}: \qquad \sigma_a - \sigma_r = \frac{P}{A_c} (1 - \epsilon_a/100) \times \textbf{10}^3$ $\text{CD}: \qquad \sigma_a - \sigma_r = \frac{P}{A_c} \frac{(1 - \epsilon_a/100)}{(1 - \epsilon_V/100)} \times \textbf{10}^3$
29	2022/7/15		p.187	データシート データシート中段 式	$\sqrt{\frac{30\eta}{g_{\rm n}(\rho_{\rm s}-\rho_{\rm w})}}$	$\sqrt{\frac{30\eta}{g_{\rm n}(\rho_{\rm s}-\rho_{\rm w})}}\times\frac{1}{10^{5}}$
30	2022/4/27		p.201	データシート	乾燥密度 g/cm³	Mg/m³
31	2022/5/18		p.229	データシート データシート下段 特記事項	$H_s=m_s/(\rho_s A)$	$H_s=m_s/(\rho_s A)\times 10^3$
32	2022/4/28		p.229	データシート データシート下段 特記事項	$m_{\rm v} = (\Delta \varepsilon / 100) / \Delta p$	$m_{\sqrt{-\Delta}} \varepsilon / \Delta p$
33	2022/4/27		p.235	データシート 下段 式	$\sigma = \frac{P}{A_0} (1 - \varepsilon/100) \times \frac{10}{}$	$\sigma = \frac{P}{A_0} (1 - \varepsilon/100) \times 10^3$

「土質試験 基本と手引き 第三回改訂版」正誤表

2022/5/19 更新 2022/5/31 修正, <mark>2022/7/15追加·修正</mark>

No.	正誤表への 追加	正誤の反映 (刷り数)	page	行位置	誤	正
34	2022/4/27		p.243	データシート	単位 u kN/m ² またはAV cm ³	無
35	2022/4/27		p.243	データシート下段 特記事項 2)式	主応力差を求める式 $ 2) \text{ UU, CU, CU}: \sigma_a - \sigma_r = \frac{P}{A_c} (1 - \epsilon_a/100) \times \frac{10}{10} $ $ \text{CD}: \sigma_a - \sigma_r = \frac{P}{A_c} \frac{(1 - \epsilon_a/100)}{(1 - \epsilon_V/100)} \times \frac{10}{10} $	主応力差を求める式 $2) \text{ UU, CU, } \overline{\text{CU}}: \sigma_a - \sigma_r = \frac{P}{A_c} (1 - \epsilon_a/100) \times 10^3$ $\text{CD}: \sigma_a - \sigma_r = \frac{P}{A_c} \frac{(1 - \epsilon_a/100)}{(1 - \epsilon_V/100)} \times 10^3$